Applied optics articles within Nature Communications

Featured

  • Article
    | Open Access

    All holographic displays and imaging techniques are fundamentally limited by the étendue supported by existing spatial light modulators. Here, the authors report on using artificial intelligence (AI) to learn an étendue expanding element that effectively increases étendue by two orders of magnitude.

    • Ethan Tseng
    • , Grace Kuo
    •  & Felix Heide
  • Article
    | Open Access

    Optical recurrent neural networks present a unique challenge for photonic machine learning. Here, the authors experimentally show the first optoacoustic recurrent operator based on stimulated Brillouin scattering which may unlock a new class of optical neural networks with recurrent functionality.

    • Steven Becker
    • , Dirk Englund
    •  & Birgit Stiller
  • Article
    | Open Access

    The researchers fuse metamaterials and origami technical to achieve ultra-wideband and large-depth reflection modulation. Flexible electronics amplify its lightweight, transparency, and cost-effectiveness, making it ideal for satellite communications.

    • Zicheng Song
    • , Juan-Feng Zhu
    •  & Cheng-Wei Qiu
  • Article
    | Open Access

    The researchers showcase a flexible meta-sensor array based on classical Mie resonance, enabling precise detection of in-plane strain direction and magnitude using dynamically transmitted terahertz (THz) signals. The sensor array holds immense promise for the real-life applications as it possesses high sensor density and has a very large size up to (110 ×130 mm2).

    • Xueguang Lu
    • , Feilong Zhang
    •  & Qiang Cheng
  • Article
    | Open Access

    The researchers showcase a photonic-electronic FMCW LiDAR source composed of a micro-electronic based high-voltage arbitrary waveform generator, a photonic circuit-based tunable Vernier laser with piezoelectric actuators, and an erbium-doped waveguide amplifier.

    • Anton Lukashchuk
    • , Halil Kerim Yildirim
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    Authors present an adaptive underwater optical communication (UWOC) technology based on multi-wavelength lasers and a full-color metasurface for converting visible-band Gaussian to circular autofocusing Airy beams. The potential of Airy beams to mitigate optical power degradation is demonstrated, enabling stable data rate transmission via 4 K video transmission for these systems.

    • Junhui Hu
    • , Zeyuan Guo
    •  & Chao Shen
  • Article
    | Open Access

    Signal transmission without the interference from ambient light is prerequisite for optical communications. Min et al. design an asymmetric 2D-3D-2D perovskite photodetector with frequency-selective photoresponse for real-time high fidelity optical communications under strong light interference.

    • Liangliang Min
    • , Haoxuan Sun
    •  & Liang Li
  • Article
    | Open Access

    Parallel information transmission components and hardware strategies are still lacking in neural networks. Here, the authors propose a strategy to use light emitting memristors with negative ultraviolet photoconductivity and intrinsic parallelism to construct direct information cross-layer modules.

    • Zhenjia Chen
    • , Zhenyuan Lin
    •  & Huipeng Chen
  • Article
    | Open Access

    Using gas cells for spectroscopic studies opens possibility for miniaturized platforms that can be integrated with other optical components. Here the authors demonstrate molecular rovibrational spectroscopy by confining molecules in a cell of subwavelength thickness.

    • Guadalupe Garcia Arellano
    • , Joao Carlos de Aquino Carvalho
    •  & Athanasios Laliotis
  • Article
    | Open Access

    Mid-infrared hyperspectral imaging is valuable for sample characterisation but suffers limited scanning rates. The authors develop such an imaging system based on parametric upconversion of supercontinuum illumination in the Fourier plane, enabling a 100-Hz acquisition rate of spectral datacubes.

    • Jianan Fang
    • , Kun Huang
    •  & Heping Zeng
  • Article
    | Open Access

    The miniaturization of spectrometers to a submillimeter-scale footprint opens opportunities for applications in hyperspectral imaging and lab-on-a-chip systems. Here, the authors report a high-performance single-pixel photodetector spectrometer based on the III-V semiconductor p-graded-n junction, featuring a voltage-tunable optical response.

    • Jingyi Wang
    • , Beibei Pan
    •  & Baile Chen
  • Article
    | Open Access

    Exploring the miniaturization of imaging systems, researchers use inverse-design for broadband meta-optics in the LWIR spectrum. Here, authors achieve a six-fold Strehl ratio improvement in image quality over conventional metalenses using a novel design and computational techniques.

    • Luocheng Huang
    • , Zheyi Han
    •  & Arka Majumdar
  • Article
    | Open Access

    An efficient and physically accurate platform is required to rapidly design high-performance integrated photonic devices. Here, the authors present a scalable framework for creating on-chip optical systems with complex and arbitrary functionality.

    • Ali Najjar Amiri
    • , Aycan Deniz Vit
    •  & Emir Salih Magden
  • Article
    | Open Access

    The integration of 2D materials with metasurfaces can enhance their quantum efficiency, but the approach is usually limited to a narrow spectral band. Here, the authors report the realization of gate-tunable graphene photodetectors combined with all-dielectric periodic slits, leading to enhanced photoresponse in the short-to-long-wave infrared.

    • Hao Jiang
    • , Jintao Fu
    •  & Cheng-Wei Qiu
  • Article
    | Open Access

    The authors investigate light beam propagation in multimode optical fibers, considering linear random mode coupling and Kerr nonlinearity. They utilize a 3D mode decomposition technique, enabling them to accurately characterize modal distributions over extended lengths of graded-index fiber.

    • Mario Zitelli
    • , Fabio Mangini
    •  & Stefan Wabnitz
  • Article
    | Open Access

    New detector materials are crucial for radiation beam monitoring in dosimeters and X-ray imaging. The authors report a solution-grown biocompatible organic single crystalline semiconductor for real-time spectral detection of charged particles with single-particle sensitivity, X-ray detection and imaging.

    • Dou Zhao
    • , Ruiling Gao
    •  & Yadong Xu
  • Article
    | Open Access

    The Authors present a universal framework that utilizes photonic integrated circuits (PIC) to enhance the efficiency of reinforcement learning (RL). Leveraging the advantages of the hybrid architecture PIC (HyArch PIC), the PIC-RL experiment demonstrates a remarkable 56% improvement in efficiency for synthesizing perovskite materials.

    • Xuan-Kun Li
    • , Jian-Xu Ma
    •  & Xian-Min Jin
  • Article
    | Open Access

    Waterproof flexible organic solar cells without compromising mechanical flexibility and conformability remains challenging. Here, the authors demonstrate in-situ growth of hole-transporting layer to strengthen interfacial and thermodynamic adhesion for better waterproofness in 3 μm-thick devices.

    • Sixing Xiong
    • , Kenjiro Fukuda
    •  & Takao Someya
  • Article
    | Open Access

    The authors showcase a five-channel silicon microring modulator array with a total data rate in the terabit range. Each microring is equipped with two separate Z-shape junctions to overcome the bandwidth and modulation efficiency trade-off, providing a pathway for future 200 Gb/s/lane silicon optical interconnects.

    • Yuan Yuan
    • , Yiwei Peng
    •  & Raymond G. Beausoleil
  • Article
    | Open Access

    Here the authors unveil an approach rooted in non-Hermitian physics to precisely control light amplification in an integrated photonic platform, paving the way for innovative on-chip functionalities, like coherent control of light amplification and routing.

    • Weijie Liu
    • , Quancheng Liu
    •  & Feng Chen
  • Article
    | Open Access

    Silicon microring resonator plays crucial role in optical computing owing to the compact footprint and energy-efficiency, yet existing modulators require >2 V to drive it. Here, the authors present a solution to this by using metal-oxide-semiconductor capacitor microring that brings down the driving voltage to 0.8 V.

    • Wei-Che Hsu
    • , Nabila Nujhat
    •  & Alan X. Wang
  • Article
    | Open Access

    Multifunctional active mid-infrared ring resonators and directional couplers with quantum cascade laser cores allow electrical control of resonant frequency and quality factors, tunable filtering and frequency comb generation.

    • Dmitry Kazakov
    • , Theodore P. Letsou
    •  & Federico Capasso
  • Article
    | Open Access

    Photonic integrated circuits have grown as potential hardware for neural networks and quantum computing, yet the tuning speed and large power consumption limited the application. Here, authors introduce the memresonator, a memristor heterogeneously integrated with a microring resonator, as a non-volatile silicon photonic phase shifter to address these limitations.

    • Bassem Tossoun
    • , Di Liang
    •  & Raymond G. Beausoleil
  • Article
    | Open Access

    The authors propose and demonstrate a novel integrated spectrometer that measures any arbitrary spectrum with two-dimensional Fourier transform, breaking the scalability limit in chip-scale spectrometry.

    • Hongnan Xu
    • , Yue Qin
    •  & Hon Ki Tsang
  • Article
    | Open Access

    Near-eye displays are pivotal for building augmented and virtual reality platforms, but hurdles remain in achieving comfort and realistic visual experiences. Here, authors demonstrate compact 3D holographic glasses with focus cues by combining merits of waveguide displays and holographic displays.

    • Changwon Jang
    • , Kiseung Bang
    •  & Douglas Lanman
  • Article
    | Open Access

    Processing of conventional infrared-transparent materials limits their applicability. The authors demonstrate 3D printing of thiol-ene optical components with mid- and long-wave infrared transparency with applications such as reaction temperature monitoring.

    • Piaoran Ye
    • , Zhihan Hong
    •  & Rongguang Liang
  • Article
    | Open Access

    The authors introduce and demonstrate experimentally a novel fundamental property of nonlinear multimode optical systems, named mode rejection. This paves the way towards a more general idea of all-optical mode control and its related applications.

    • Kunhao Ji
    • , Ian Davidson
    •  & Massimiliano Guasoni
  • Article
    | Open Access

    MEMS-based photonic integrated circuits (PICs) are often limited in speed by mechanical resonances. Here the authors report a programmable architecture for PICs which uses mechanical eigenmodes for synchronized, resonantly enhanced optical modulation.

    • Mark Dong
    • , Julia M. Boyle
    •  & Dirk Englund
  • Article
    | Open Access

    The entanglement of fibrous elements produces flexible structures with enhanced strength and resilience to abrasion. Here, the authors report the weaving of organic crystals into flexible and robust patches with plain, twill, and satin topologies of arbitrary porosity, expanding one-dimensional crystals into flexible, two-dimensional planar structures with potential for future applications in flexible electronics.

    • Linfeng Lan
    • , Liang Li
    •  & Hongyu Zhang