Integrated optics articles within Nature Communications

Featured

  • Article
    | Open Access

    An efficient and physically accurate platform is required to rapidly design high-performance integrated photonic devices. Here, the authors present a scalable framework for creating on-chip optical systems with complex and arbitrary functionality.

    • Ali Najjar Amiri
    • , Aycan Deniz Vit
    •  & Emir Salih Magden
  • Article
    | Open Access

    The Authors present a universal framework that utilizes photonic integrated circuits (PIC) to enhance the efficiency of reinforcement learning (RL). Leveraging the advantages of the hybrid architecture PIC (HyArch PIC), the PIC-RL experiment demonstrates a remarkable 56% improvement in efficiency for synthesizing perovskite materials.

    • Xuan-Kun Li
    • , Jian-Xu Ma
    •  & Xian-Min Jin
  • Article
    | Open Access

    Silicon microring resonator plays crucial role in optical computing owing to the compact footprint and energy-efficiency, yet existing modulators require >2 V to drive it. Here, the authors present a solution to this by using metal-oxide-semiconductor capacitor microring that brings down the driving voltage to 0.8 V.

    • Wei-Che Hsu
    • , Nabila Nujhat
    •  & Alan X. Wang
  • Article
    | Open Access

    Multifunctional active mid-infrared ring resonators and directional couplers with quantum cascade laser cores allow electrical control of resonant frequency and quality factors, tunable filtering and frequency comb generation.

    • Dmitry Kazakov
    • , Theodore P. Letsou
    •  & Federico Capasso
  • Article
    | Open Access

    Photonic integrated circuits have grown as potential hardware for neural networks and quantum computing, yet the tuning speed and large power consumption limited the application. Here, authors introduce the memresonator, a memristor heterogeneously integrated with a microring resonator, as a non-volatile silicon photonic phase shifter to address these limitations.

    • Bassem Tossoun
    • , Di Liang
    •  & Raymond G. Beausoleil
  • Article
    | Open Access

    The authors propose and demonstrate a novel integrated spectrometer that measures any arbitrary spectrum with two-dimensional Fourier transform, breaking the scalability limit in chip-scale spectrometry.

    • Hongnan Xu
    • , Yue Qin
    •  & Hon Ki Tsang
  • Article
    | Open Access

    MEMS-based photonic integrated circuits (PICs) are often limited in speed by mechanical resonances. Here the authors report a programmable architecture for PICs which uses mechanical eigenmodes for synchronized, resonantly enhanced optical modulation.

    • Mark Dong
    • , Julia M. Boyle
    •  & Dirk Englund
  • Article
    | Open Access

    Designing an efficient activation function for optical neural networks remains a challenge. Here, the authors demonstrate a modulator-detector-in-one graphene/silicon heterojunction ring resonators enabling on-chip reconfigurable activation function devices with phase activation capability for optical neural networks.

    • Chuyu Zhong
    • , Kun Liao
    •  & Hongtao Lin
  • Article
    | Open Access

    Here, the authors report the realization of a sub-THz wireless data link based on a graphene-integrated optoelectronic mixer with a >96 GHz bandwidth, −44 dB upconversion efficiency and <0.1 mm2 footprint, providing an alternative approach for the realization of millimeter-wave transmitters.

    • Alberto Montanaro
    • , Giulia Piccinini
    •  & Marco Romagnoli
  • Article
    | Open Access

    Recent years have seen a growing need for miniaturized spectroscopic tools. Here, authors present a novel integrated spectrometer with programmable photonic circuits, achieving record-high resolution and bandwidth via only a few filtering components.

    • Chunhui Yao
    • , Kangning Xu
    •  & Richard Penty
  • Article
    | Open Access

    Accelerated electron beams are potentially useful for imaging and different type of light sources. Here the authors demonstrate electron acceleration using metallic laser acceleration with efficiency comparable to that of dielectric laser accelerators.

    • Dingguo Zheng
    • , Siyuan Huang
    •  & Jianqi Li
  • Article
    | Open Access

    Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.

    • Zihan Li
    • , Rui Ning Wang
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    Data security of internet is increasingly more demanding in the current era, yet the traditional electronic approach is limited in speed and efficiency. Here, the authors proposed a dual-layer optical encryption fluorescent polymer waveguide chip based on optical pulse-code modulation to mitigate the limitations.

    • Chunxue Wang
    • , Daming Zhang
    •  & Teng Fei
  • Article
    | Open Access

    Plasma can act as a tunable medium in electro-optical device. Here the authors demonstrate electrically induced transmission due to change in absorption in a microphotonic device consisting of a plasma-filled microcavity.

    • Baheej Bathish
    • , Raanan Gad
    •  & Tal Carmon
  • Article
    | Open Access

    Lithium niobate plays an important role in integrated photonics, but its widespread application requires a reliable solution. Here, the authors present a wafer-scale approach to LNOI integration via wafer bonding to silicon nitride PICs.

    • Mikhail Churaev
    • , Rui Ning Wang
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    A microwave-rate soliton microcomb whose repetition rate can be modulated at 75 MHz. Moreover, the repetition rate can be locked to an external microwave reference by direct injection locking or feedback locking without external modulation.

    • Yang He
    • , Raymond Lopez-Rios
    •  & Qiang Lin
  • Article
    | Open Access

    Squeezed light allows for quantum-enhanced, sub-shot-noise sensing, but its generation and use on a chip has so far remained elusive. Here, the authors fill this gap by demonstrating a thin-film lithium-niobate-based integrated quantum optical sensor, which beats shot-noise-limited SNR by ~ 4%.

    • Hubert S. Stokowski
    • , Timothy P. McKenna
    •  & Amir H. Safavi-Naeini
  • Article
    | Open Access

    In most optical computing schemes, the size of the chip increases quadratically with the problem size. Here, the authors demonstrate an architecture for optical convolutional neural networks which, while losing the independent reconfigurability of the kernels, allows for linear scaling of the circuit size.

    • Xiangyan Meng
    • , Guojie Zhang
    •  & Ming Li
  • Article
    | Open Access

    This work presents ultracompact and low-power laser beam scanners using microcantilevers embedded with nanophotonic circuits. These chip-scale devices are made in a semiconductor foundry and project visible light patterns in one or two dimensions.

    • Saeed Sharif Azadeh
    • , Jason C. C. Mak
    •  & Joyce K. S. Poon
  • Article
    | Open Access

    Authors present a fibre Bragg grating-based all-pass spectral phase filter with an unprecedented frequency resolution of 1 GHz, at least 10× improvement compared to a standard optical waveshaper. Using the all-fibre phase filter, fully passive NOT and XNOR logic operations are experimentally demonstrated at ultrafast speeds with few-fJ/bit energy consumption.

    • Saket Kaushal
    • , A. Aadhi
    •  & José Azaña
  • Article
    | Open Access

    Electro-optic modulators can be useful for imaging, sensing and information processing applications. Here the authors demonstrate an ultra-low drive voltage visible to near infrared range electro-optic modulator in the form of amplitude and phase modulation using thin-film lithium niobate.

    • Dylan Renaud
    • , Daniel Rimoli Assumpcao
    •  & Marko Loncar
  • Article
    | Open Access

    Integrating diffractive optical neural networks (DONN) would reduce errors due to bulky components and calibration. Here, the authors exploit integrated 1D dielectric metasurfaces to realise an on-chip DONN device with 90% classification accuracy, computing at 10^16 flops/mm^2 and consuming 10E-17 J/Flop.

    • Tingzhao Fu
    • , Yubin Zang
    •  & Hongwei Chen
  • Article
    | Open Access

    Optical neural networks face remarkable challenges in high-level integration and on-chip operation. In this work the authors enable optical convolution utilizing time-wavelength plane stretching approach on a microcomb-driven chip-based photonic processing unit.

    • Bowen Bai
    • , Qipeng Yang
    •  & Xingjun Wang
  • Article
    | Open Access

    Fabrication errors limit the scaling of programmable photonic circuits. Here the authors show how a broad class of circuits can be made asymptotically fault-tolerant, where the effect of errors remains controlled regardless of the circuit’s size.

    • Ryan Hamerly
    • , Saumil Bandyopadhyay
    •  & Dirk Englund
  • Article
    | Open Access

    Efficient and broadband visible-light photodetectors will bring great advantages in applications such as biosensing and quantum information. Here the authors develop a photodetector with high quantum efficiency across broad wavelength range suitable for monolithic integration in photonics circuits.

    • Yiding Lin
    • , Zheng Yong
    •  & Joyce K. S. Poon
  • Article
    | Open Access

    On-Chip integration of laser systems led to impressive development in many field of application like LIDAR or AR/VR to cite a few. Here the authors harness Pockels effect in an integrated semiconductor platform achieving fast on-chip configurability of a narrow linewidth laser.

    • Mingxiao Li
    • , Lin Chang
    •  & Qiang Lin
  • Article
    | Open Access

    Here, the authors demonstrate a chip-scale device that realizes a comprehensive set of resonant second order nonlinear processes including optical parametric oscillation with a threshold power of 70 microwatts.

    • Timothy P. McKenna
    • , Hubert S. Stokowski
    •  & Amir H. Safavi-Naeini
  • Article
    | Open Access

    Full tomography of biphoton frequency comb states requires frequency mixing operations which are hard to scale. Here, the authors propose and demonstrate a protocol exploiting advanced Bayesian statistical methods and randomized measurements coming from complex mode mixing in electro-optic phase modulators.

    • Hsuan-Hao Lu
    • , Karthik V. Myilswamy
    •  & Joseph M. Lukens
  • Article
    | Open Access

    Here, the authors develop a UV-compatible photonic integrated circuit for structured illumination microscopy on a conventional wide-field microscope. Operating at a wavelength of 360 nm, they generate switchable far-field fringe patterns, and demonstrate autofluorescence imaging of yeast cells.

    • Chupao Lin
    • , Juan Santo Domingo Peñaranda
    •  & Nicolas Le Thomas
  • Article
    | Open Access

    Stable and tunable integrated lasers are fundamental building blocks for applications from spectroscopy to imaging and communication. Here the authors present a narrow linewidth hybrid photonic integrated laser with low frequency noise and fast linear wavelength tuning. They then provide an efficient FMCW LIDAR demonstration.

    • Grigory Lihachev
    • , Johann Riemensberger
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    Mirrors that demonstrate 98% reflectivity and withstand 10 kilowatts of focused continuous-wave laser light are created by nanoscale fabrication of single-crystal diamond. The work finds applications in medicine, defence, industry, and communications.

    • Haig A. Atikian
    • , Neil Sinclair
    •  & Marko Lončar
  • Article
    | Open Access

    Chiral mode converters are found in a wide range of practical applications in optics, but the previous proposals suffer from low efficiency and large device size. Here the authors propose a highly efficient and compact chiral mode converter based on encircling exceptional points along Hamiltonian parameter space boundary, relaxing the adiabaticity constraints.

    • Xiaoqian Shu
    • , Aodong Li
    •  & Lin Chen
  • Article
    | Open Access

    It remains challenging to realize narrowband filters needed for high-performance communications systems using integrated photonics. Using a multi-port Brillouin-based optomechanical system, the authors demonstrate an ultra-narrowband notch filter with high rejection with CMOS compatible techniques.

    • Shai Gertler
    • , Nils T. Otterstrom
    •  & Peter T. Rakich
  • Article
    | Open Access

    Kerr frequency combs are a promising laser source for future optical networks. The authors demonstrate coherence-cloning between two remote Kerr combs and improve optical coherent communication in terms of performance, power consumption, and simplicity.

    • Yong Geng
    • , Heng Zhou
    •  & Kun Qiu