Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The 'omics' of adrenocortical tumours for personalized medicine

Key Points

  • The available genomic data on adrenocortical tumours come from transcriptome (mRNA expression), miRNome (microRNA expression) and methylome (DNA methylation) analyses, as well as from comparative genomic hybridization and single nucleotide polymorphisms arrays

  • Genomic studies performed to date indicate that malignant and benign adrenocortical tumours can be discriminated using molecular tools, including profiling of mRNA expression, microRNA expression or of chromosomal alterations

  • Using transcriptome or methylome data, classification algorithms can identify subtypes of adrenocortical tumours that are associated with different outcomes; thus, these molecular features can help to determine prognosis

  • Large-scale clinical studies are needed to determine the part that molecular analyses should play in clinical practice; international collaborative research networks should enable recruitment of adequate cohorts in the near future

  • To improve personalization of prognostication and therapy, a detailed molecular classification of adrenocortical tumours should be developed through integration of data from wide-ranging and complementary 'omics' studies, particularly exome and whole-genome sequencing

Abstract

Pan-genomic analyses of genetic and epigenetic alterations and gene expression profiles are providing important new insights into the pathogenesis and molecular classification of cancers. The technologies and methods used for these studies are rapidly diversifying and improving. The use of such methodologies for the analysis of adrenocortical tumours has revealed clear transcriptomic (mRNA and microRNA expression profiles), epigenomic (DNA methylation profiles) and genomic (DNA mutations and chromosomal alterations) differences between benign and malignant tumours. Interestingly, genomic studies of adrenal cancers have also identified subtypes of malignant tumours, which demonstrate distinct patterns of molecular alterations and are associated with different clinical outcomes. These discoveries have created the opportunity for classifying adrenocortical tumours on the basis of molecular analyses. Following these genomic studies, efforts to develop new molecular tools that improve diagnosis and prognostication of patients with adrenocortical tumours have also been made. This Review describes the progress that has been made towards classification of adrenocortical tumours to date based on key genomic approaches. In addition, the potential for the development and use of various molecular tools to personalize the management of patients with adrenocortical tumours is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the genomic and transcriptomic analyses performed in adrenocortical carcinomas.
Figure 2: Prediction of recurrence of adrenocortical tumours (adrenocortical carcinoma and adrenocortical adenoma).
Figure 3: Prediction of overall survival in adrenocortical carcinoma based on gene expression profiling.
Figure 4: Prediction of overall survival in patients with adrenocortical carcinomas based on analysis of chromosomal alterations.
Figure 5: Prediction of overall survival based on DNA methylation profiles in adrenocortical carcinomas.
Figure 6: Prediction of overall survival of patients with adrenocortical tumour based on miRNA expression.
Figure 7: Molecular classification of adrenocortical tumours according to the genomic information.

Similar content being viewed by others

References

  1. Giordano, T. J. et al. Distinct transcriptional profiles of adrenocortical tumours uncovered by DNA microarray analysis. Am. J. Pathol. 162, 521–531 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. de Fraipont, F. et al. Gene expression profiling of human adrenocortical tumours using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy. J. Clin. Endocrinol. Metab. 90, 1819–1829 (2005).

    CAS  PubMed  Google Scholar 

  3. Velázquez-Fernández, D. et al. Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 138, 1087–1094 (2005).

    PubMed  Google Scholar 

  4. Slater, E. P. et al. Analysis by cDNA microarrays of gene expression patterns of human adrenocortical tumours. Eur. J. Endocrinol. 154, 587–598 (2006).

    CAS  PubMed  Google Scholar 

  5. Lombardi, C. P. et al. Gene expression profiling of adrenal cortical tumours by cDNA macroarray analysis. Results of a preliminary study. Biomed. Pharmacother. 60, 186–190 (2006).

    CAS  PubMed  Google Scholar 

  6. Fernandez-Ranvier, G. G. et al. Candidate diagnostic markers and tumour suppressor genes for adrenocortical carcinoma by expression profile of genes on chromosome 11q13. World J. Surg. 32, 873–881 (2008).

    PubMed  Google Scholar 

  7. Fernandez-Ranvier, G. G. et al. Identification of biomarkers of adrenocortical carcinoma using genomewide gene expression profiling. Arch. Surg. 143, 841–846 (2008).

    PubMed  Google Scholar 

  8. Tömböl, Z. et al. Integrative molecular bioinformatics study of human adrenocortical tumours: microRNA, tissue-specific target prediction, and pathway analysis. Endocr. Relat. Cancer 16, 895–906 (2009).

    PubMed  Google Scholar 

  9. Soon, P. S. et al. Microarray gene expression and immunohistochemistry analyses of adrenocortical tumours identify IGF2 and Ki-67 as useful in differentiating carcinomas from adenomas. Endocr. Relat. Cancer 16, 573–583 (2009).

    CAS  PubMed  Google Scholar 

  10. Giordano, T. J. et al. Molecular classification and prognostication of adrenocortical tumours by transcriptome profiling. Clin. Cancer Res. 15, 668–676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. De Reyniès, A. et al. Gene expression profiling reveals a new classification of adrenocortical tumours and identifies molecular predictors of malignancy and survival. J. Clin. Oncol. 27, 1108–1115 (2009).

    PubMed  Google Scholar 

  12. Laurell, C. et al. Transcriptional profiling enables molecular classification of adrenocortical tumours. Eur. J. Endocrinol. 161, 141–152 (2009).

    CAS  PubMed  Google Scholar 

  13. Zhao, J. et al. Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumours. Genes Chromosomes Cancer 34, 48–57 (2002).

    CAS  PubMed  Google Scholar 

  14. Stephan, E. A. et al. Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol. Cancer Ther. 7, 425–431 (2008).

    CAS  PubMed  Google Scholar 

  15. Szabó, P. M. et al. Meta-analysis of adrenocortical tumour genomics data: novel pathogenic pathways revealed. Oncogene 29, 3163–3172 (2010).

    PubMed  Google Scholar 

  16. Barreau, O. et al. Clinical and pathophysiological implications of chromosomal alterations in adrenocortical tumours: an integrated genomic approach. J. Clin. Endocrinol. Metab. 97, E301–E311 (2012).

    CAS  PubMed  Google Scholar 

  17. Rechache, N. S. et al. DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumours. J. Clin. Endocrinol. Metab. 97, E1004–E1013 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fonseca, A. L. et al. Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumours. Genes Chromosomes Cancer 51, 949–960 (2012).

    CAS  PubMed  Google Scholar 

  19. Barreau, O. et al. Identification of a CpG island methylator phenotype in adrenocortical carcinomas. J. Clin. Endocrinol. Metab. 98, E174–E184 (2013).

    CAS  PubMed  Google Scholar 

  20. Soon, P. S. et al. miR-195 and miR-483-5p identified as predictors of poor prognosis in adrenocortical cancer. Clin. Cancer Res. 15, 7684–7692 (2009).

    CAS  PubMed  Google Scholar 

  21. Patterson, E. E., Holloway, A. K., Weng, J., Fojo, T. & Kebebew, E. MicroRNA profiling of adrenocortical tumours reveals miR-483 as a marker of malignancy. Cancer 117, 1630–1639 (2011).

    CAS  PubMed  Google Scholar 

  22. Schmitz, K. J. et al. Differential expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours. J. Clin. Pathol. 64, 529–535 (2011).

    CAS  PubMed  Google Scholar 

  23. Özata, D. M. et al. The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma. Endocr. Relat. Cancer 18, 643–655 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. Chabre, O. et al. Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr. Relat. Cancer 20, 579–594 (2013).

    CAS  PubMed  Google Scholar 

  25. Ronchi, C. L. et al. Single nucleotide polymorphism array profiling of adrenocortical tumours—evidence for an adenoma carcinoma sequence? PLoS ONE 8, e73959 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. De Martino, M. C. et al. Molecular screening for a personalized treatment approach in advanced adrenocortical cancer. J. Clin. Endocrinol. Metab. 98, 4080–4088 (2013).

    CAS  PubMed  Google Scholar 

  27. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  PubMed  Google Scholar 

  28. Van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    CAS  PubMed  Google Scholar 

  29. Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA 98, 13790–13795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Garber, M. E. et al. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl Acad. Sci. USA 98, 13784–13789 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Beer, D. G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8, 816–824 (2002).

    CAS  PubMed  Google Scholar 

  32. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    CAS  PubMed  Google Scholar 

  33. Singh, D. et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002).

    CAS  PubMed  Google Scholar 

  34. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    CAS  PubMed  Google Scholar 

  35. Shipp, M. A. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68–74 (2002).

    CAS  PubMed  Google Scholar 

  36. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    CAS  PubMed  Google Scholar 

  37. Gruvberger, S. et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 61, 5979–5984 (2001).

    CAS  PubMed  Google Scholar 

  38. Gelmon, K. et al. Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann. Oncol. 23, 2223–2234 (2012).

    CAS  PubMed  Google Scholar 

  39. McDermott, U., Downing, J. R. & Stratton, M. R. Genomics and the continuum of cancer care. N. Engl. J. Med. 364, 340–350 (2011).

    CAS  PubMed  Google Scholar 

  40. Garraway, L. A. Genomics-driven oncology: framework for an emerging paradigm. J. Clin. Oncol. 31, 1806–1814 (2013).

    PubMed  Google Scholar 

  41. Gordon, G. J. et al. Identification of novel candidate oncogenes and tumour suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am. J. Pathol. 166, 1827–1840 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    CAS  PubMed  Google Scholar 

  43. Remke, M. et al. Adult medulloblastoma comprises three major molecular variants. J. Clin. Oncol. 29, 2717–2723 (2011).

    PubMed  Google Scholar 

  44. Burnichon, N. et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum. Mol. Genet. 20, 3974–3985 (2011).

    CAS  PubMed  Google Scholar 

  45. Ribeiro, R. C. et al. The International Pediatric Adrenocortical Tumour Registry initiative: contributions to clinical, biological, and treatment advances in pediatric adrenocortical tumours. Mol. Cell. Endocrinol. 351, 37–43 (2012).

    CAS  PubMed  Google Scholar 

  46. Bertherat, J., Mosnier-Pudar, H. & Bertagna, X. Adrenal incidentalomas. Curr. Opin. Oncol. 14, 58–63 (2002).

    PubMed  Google Scholar 

  47. Grumbach, M. M. et al. Management of the clinically inapparent adrenal mass ('incidentaloma'). Ann. Intern. Med. 138, 424–429 (2003).

    PubMed  Google Scholar 

  48. Libè, R., Fratticci, A. & Bertherat, J. Adrenocortical cancer: pathophysiology and clinical management. Endocr. Relat. Cancer 14, 13–28 (2007).

    PubMed  Google Scholar 

  49. Abiven, G. et al. Clinical and biological features in the prognosis of adrenocortical cancer: poor outcome of cortisol-secreting tumours in a series of 202 consecutive patients. J. Clin. Endocrinol. Metab. 91, 2650–2655 (2006).

    CAS  PubMed  Google Scholar 

  50. Fassnacht, M. et al. Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: proposal for a Revised TNM Classification. Cancer 115, 243–250 (2009).

    PubMed  Google Scholar 

  51. Assié, G. et al. Prognostic parameters of metastatic adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 92, 148–154 (2007).

    PubMed  Google Scholar 

  52. Weiss, L. M. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumours. Am. J. Surg. Pathol. 8, 163–169 (1984).

    CAS  PubMed  Google Scholar 

  53. Lau, S. K. & Weiss, L. M. The Weiss system for evaluating adrenocortical neoplasms: 25 years later. Hum. Pathol. 40, 757–768 (2009).

    PubMed  Google Scholar 

  54. Tissier, F. et al. Adrenocortical tumours: improving the practice of the Weiss system through virtual microscopy: a National Program of the French Network INCa-COMETE. Am. J. Surg. Pathol. 36, 1194–1201 (2012).

    PubMed  Google Scholar 

  55. Stojadinovic, A. et al. Adrenocortical carcinoma: clinical, morphologic, and molecular characterization. J. Clin. Oncol. 20, 941–950 (2002).

    CAS  PubMed  Google Scholar 

  56. Beuschlein, F. et al. Prognostic value of histological markers in localized adrenocortical carcinoma after complete resection. Presented at the 95th Annual Meeting of the Endocrine Society (San Francisco, 2013).

    Google Scholar 

  57. Sbiera, S. et al. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumours. J. Clin. Endocrinol. Metab. 95, E161–E171 (2010).

    CAS  PubMed  Google Scholar 

  58. Gaujoux, S. et al. β-catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma. Clin. Cancer Res. 17, 328–336 (2011).

    CAS  PubMed  Google Scholar 

  59. Gicquel, C. et al. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumours. Cancer Res. 61, 6762–6767 (2001).

    CAS  PubMed  Google Scholar 

  60. Reincke, M. et al. p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J. Clin. Endocrinol. Metab. 78, 790–794 (1994).

    CAS  PubMed  Google Scholar 

  61. Libè, R. et al. Somatic TP53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity. Clin. Cancer Res. 13, 844–850 (2007).

    PubMed  Google Scholar 

  62. Suh, I., Guerrero, M. A. & Kebebew, E. Gene-expression profiling of adrenocortical carcinoma. Expert Rev. Mol. Diagn. 9, 343–351 (2009).

    CAS  PubMed  Google Scholar 

  63. Bussey, K. J. & Demeure, M. J. Genomic and expression profiling of adrenocortical carcinoma: application to diagnosis, prognosis and treatment. Future Oncol. 5, 641–655 (2009).

    CAS  PubMed  Google Scholar 

  64. Soon, P. S. & Sidhu, S. B. Molecular basis of adrenocortical carcinomas. Minerva Endocrinol. 34, 137–147 (2009).

    CAS  PubMed  Google Scholar 

  65. Assié, G. et al. The pathophysiology, diagnosis and prognosis of adrenocortical tumours revisited by transcriptome analyses. Trends Endocrinol. Metab. 21, 325–334 (2010).

    PubMed  Google Scholar 

  66. Giordano, T. J. Adrenocortical tumours: an integrated clinical, pathologic, and molecular approach at the University of Michigan. Arch. Pathol. Lab. Med. 134, 1440–1443 (2010).

    PubMed  Google Scholar 

  67. Ragazzon, B., Assié, G. & Bertherat, J. Transcriptome analysis of adrenocortical cancers: from molecular classification to the identification of new treatments. Endocr. Relat. Cancer 18, R15–R27 (2011).

    CAS  PubMed  Google Scholar 

  68. Assié, G., Giordano, T. J. & Bertherat, J. Gene expression profiling in adrenocortical neoplasia. Mol. Cell. Endocrinol. 351, 111–117 (2012).

    PubMed  Google Scholar 

  69. Jain, M., Rechache, N. & Kebebew, E. Molecular markers of adrenocortical tumours. J. Surg. Oncol. 106, 549–556 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lehmann, T. & Wrzesinski, T. The molecular basis of adrenocortical cancer. Cancer Genet. 205, 131–137 (2012).

    CAS  PubMed  Google Scholar 

  71. Zsippai, A. et al. mRNA and microRNA expression patterns in adrenocortical cancer. Am. J. Cancer Res. 1, 618–628 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fassnacht, M. et al. Update in adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 98, 4551–4564 (2013).

    CAS  PubMed  Google Scholar 

  73. Giordano, T. J. The argument for mitotic rate-based grading for the prognostication of adrenocortical carcinoma. Am. J. Surg. Pathol. 35, 471–473 (2011).

    PubMed  Google Scholar 

  74. Fragoso, M. C. et al. Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumours: validation in a Brazilian cohort of adult and pediatric patients. Eur. J. Endocrinol. 166, 61–67 (2012).

    CAS  PubMed  Google Scholar 

  75. Lazar, C. et al. Batch effect removal methods for microarray gene expression data integration: a survey. Brief. Bioinform. 14, 469–490 (2013).

    CAS  PubMed  Google Scholar 

  76. Feng, H. et al. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq. Cancer Lett. 340, 179–191 (2013).

    CAS  PubMed  Google Scholar 

  77. Kjellman, M. et al. Genetic aberrations in adrenocortical tumours detected using comparative genomic hybridization correlate with tumour size and malignancy. Cancer Res. 56, 4219–4223 (1996).

    CAS  PubMed  Google Scholar 

  78. Zhao, J. et al. Analysis of genomic alterations in sporadic adrenocortical lesions. Gain of chromosome 17 is an early event in adrenocortical tumourigenesis. Am. J. Pathol. 155, 1039–1045 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Dohna, M. et al. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes Cancer 28, 145–152 (2000).

    CAS  PubMed  Google Scholar 

  80. Sidhu, S. et al. Comparative genomic hybridization analysis of adrenocortical tumours. J. Clin. Endocrinol. Metab. 87, 3467–3474 (2002).

    CAS  PubMed  Google Scholar 

  81. Gruschwitz, T., Breza, J., Wunderlich, H. & Junker, K. Improvement of histopathological classification of adrenal gland tumours by genetic differentiation. World J. Urol. 28, 329–334 (2010).

    PubMed  Google Scholar 

  82. Chang, H. et al. Exome sequencing reveals comprehensive genomic alterations across eight cancer cell lines. PLoS ONE 6, e21097 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. MacConaill, L. E. Existing and emerging technologies for tumour genomic profiling. J. Clin. Oncol. 31, 1815–1824 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kulis, M. & Esteller, M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).

    PubMed  Google Scholar 

  85. Mukamel, Z. & Tanay, A. Hypomethylation marks enhancers within transposable elements. Nat. Genet. 45, 717–718 (2013).

    CAS  PubMed  Google Scholar 

  86. Gicquel, C. et al. Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumours. J. Clin. Endocrinol. Metab. 78, 1444–1453 (1994).

    CAS  PubMed  Google Scholar 

  87. Gicquel, C. et al. Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumours: study on a series of 82 tumours. J. Clin. Endocrinol. Metab. 82, 2559–2565 (1997).

    CAS  PubMed  Google Scholar 

  88. Gao, Z. H. et al. Association of H19 promoter methylation with the expression of H19 and IGF-II genes in adrenocortical tumours. J. Clin. Endocrinol. Metab. 87, 1170–1176 (2002).

    CAS  PubMed  Google Scholar 

  89. Simons, C. C. et al. A novel classification of colorectal tumours based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann. Oncol. 24, 2048–2056 (2013).

    CAS  PubMed  Google Scholar 

  90. Liu, J., Li, X. D., Vaheri, A. & Voutilainen, R. DNA methylation affects cell proliferation, cortisol secretion and steroidogenic gene expression in human adrenocortical NCI-H295R cells. J. Mol. Endocrinol. 33, 651–662 (2004).

    CAS  PubMed  Google Scholar 

  91. Utriainen, P., Liu, J., Kuulasmaa, T. & Voutilainen, R. Inhibition of DNA methylation increases follistatin expression and secretion in the human adrenocortical cell line NCI-H295R. J. Endocrinol. 188, 305–310 (2006).

    CAS  PubMed  Google Scholar 

  92. Suh, I. et al. Antineoplastic effects of decitabine, an inhibitor of DNA promoter methylation, in adrenocortical carcinoma cells. Arch. Surg. 145, 226–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Simi, L. et al. Seladin-1 expression is regulated by promoter methylation in adrenal cancer. BMC Cancer 10, 201 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  95. Wang, Q. et al. Briefing in family characteristics of microRNAs and their applications in cancer research. Biochim. Biophys. Acta 1844, 191–197 (2014).

    CAS  PubMed  Google Scholar 

  96. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    CAS  PubMed  Google Scholar 

  97. Xi, Y. et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13, 1668–1674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Laios, A. et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol. Cancer 7, 35 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Hui, A. B. et al. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab. Invest. 89, 597–606 (2009).

    CAS  PubMed  Google Scholar 

  100. Leite, K. R. et al. miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue. Urol. Oncol. 29, 533–537 (2011).

    CAS  PubMed  Google Scholar 

  101. De Preter, K. et al. miRNA expression profiling enables risk stratification in archived and fresh neuroblastoma tumour samples. Clin. Cancer Res. 17, 7684–7692 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hall, J. S. et al. Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation. Br. J. Cancer 107, 684–694 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Culpin, R. E., Sieniawski, M., Proctor, S. J., Menon, G. & Mainou-Fowler, T. MicroRNAs are suitable for assessment as biomarkers from formalin-fixed paraffin-embedded tissue, and miR-24 represents an appropriate reference microRNA for diffuse large B-cell lymphoma studies. J. Clin. Pathol. 66, 249–252 (2013).

    CAS  PubMed  Google Scholar 

  104. Li, X., Lu, Y., Chen, Y., Lu, W. & Xie, X. MicroRNA profile of paclitaxel-resistant serous ovarian carcinoma based on formalin-fixed paraffin-embedded samples. BMC Cancer 13, 216 (2013).

    PubMed  PubMed Central  Google Scholar 

  105. Mwenifumbo, J. C. & Marra, M. A. Cancer genome-sequencing study design. Nat. Rev. Genet. 14, 321–332 (2013).

    CAS  PubMed  Google Scholar 

  106. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J. Bertherat's research on adrenal cancer is supported in part by the COMETE Network (Programme Hospitalier de Recherche Clinique; grant AOM95201), the INCa Recherche Translationelle (grant 2009-RT-02), and ENSAT-CANCER Health (FP7 program grant F2-2010-259735).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching the data and to writing the article. J. Bertherat and G. Assié discussed the content and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Jérôme Bertherat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Key genomic studies in adrenocortical carcinoma published to date (XLS 61 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assié, G., Jouinot, A. & Bertherat, J. The 'omics' of adrenocortical tumours for personalized medicine. Nat Rev Endocrinol 10, 215–228 (2014). https://doi.org/10.1038/nrendo.2013.272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing