Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adrenocortical carcinoma — towards genomics guided clinical care

Abstract

Adrenocortical carcinoma (ACC) is an aggressive and rare neoplasm that originates in the cortex of the adrenal gland. The disease is associated with heterogeneous but mostly poor outcomes and lacks effective pharmaceutical treatment options. Multi-omics studies have defined the landscape of molecular alterations in ACC. Specific molecular signatures can be detected in body fluids, potentially enabling improved diagnostic applications for patients with adrenal tumours. Importantly, pan-molecular data sets further reveal a spectrum within ACC, with three major subgroups that have different disease outcomes. These new subgroups have value as prognostic biomarkers. Research has revealed that the p53–RB and the WNT–β-catenin pathways are common disease drivers in ACC. However, these pathways remain difficult to target by therapeutic interventions. Instead, a unique characteristic of ACC is steroidogenic differentiation, which has emerged as a potential treatment target, with several agents undergoing preclinical or clinical investigations. Finally, a large proportion of ACC tumours have genetic profiles that are associated with promising therapeutic responsiveness in other cancers. All these opportunities now await translation from the laboratory into the clinical setting, thereby offering a real potential of improved survival outcomes and increased quality of life for patients with this serious condition.

Key points

  • Adrenocortical carcinoma (ACC) is an ultra-rare disease that is associated with poor outcomes; surgery, mitotane-based and platinum-based chemotherapy remain the only effective therapeutic strategies.

  • Ongoing clinical trials include two phase III trials (ADIUVO and ADIUVO-2) as well as multiple phase II studies.

  • Two large consortia have characterized the landscape of molecular alterations in ACC, which included high chromosomal aneuploidy, and the most common driver genes are TP53 and CTNNB1.

  • Three molecular subtypes of ACC have been defined that correlate with prognosis; related surrogate biomarkers that are adopted for clinical use have been described.

  • Up to 50% of metastatic ACCs might harbour genetic aberrations associated with treatment efficacy in other diseases; evaluating a precision oncology approach based on these features will require implementation of new clinical trial designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of ACC research.
Fig. 2: Biology of ACC from different perspectives.
Fig. 3: Molecular hallmarks and drug targets in ACC.
Fig. 4: A biomarker-driven umbrella trial for treatment of ACC.

Similar content being viewed by others

References

  1. McAteer, J. P., Huaco, J. A. & Gow, K. W. Predictors of survival in pediatric adrenocortical carcinoma: a Surveillance, Epidemiology, and End Results (SEER) program study. J. Pediatr. Surg. 48, 1025–1031 (2013).

    PubMed  Google Scholar 

  2. Kerkhofs, T. M. et al. Adrenocortical carcinoma: a population-based study on incidence and survival in the Netherlands since 1993. Eur. J. Cancer 49, 2579–2586 (2013).

    PubMed  Google Scholar 

  3. Cronin, K. A. et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer 124, 2785–2800 (2018).

    PubMed  Google Scholar 

  4. Fassnacht, M. et al. Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: proposal for a revised TNM classification. Cancer 115, 243–250 (2009).

    PubMed  Google Scholar 

  5. Wang, X. et al. Characteristics of The Cancer Genome Atlas cases relative to U.S. general population cancer cases. Br. J. Cancer 119, 885–892 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Liu, J. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lam, A. K. Update on adrenal tumours in 2017 World Health Organization (WHO) of endocrine tumours. Endocr. Pathol. 28, 213–227 (2017).

    PubMed  Google Scholar 

  8. Lloyd, R. V., Osamura, R. Y., Kloppel, G. & Rosai, J. WHO Classification of Tumours of Endocrine Organs 4th edn (IARC, 2017).

  9. Weiss, L. M. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am. J. Surg. Pathol. 8, 163–169 (1984).

    CAS  PubMed  Google Scholar 

  10. Fassnacht, M. et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 179, G1–G46 (2018). This publication reports the first focused clinical guidelines of ACC.

    CAS  PubMed  Google Scholar 

  11. Berruti, A. et al. Prognostic role of overt hypercortisolism in completely operated patients with adrenocortical cancer. Eur. Urol. 65, 832–838 (2014).

    CAS  PubMed  Google Scholar 

  12. Abiven, G. et al. Clinical and biological features in the prognosis of adrenocortical cancer: poor outcome of cortisol-secreting tumors in a series of 202 consecutive patients. J. Clin. Endocrinol. Metab. 91, 2650–2655 (2006).

    CAS  PubMed  Google Scholar 

  13. Weiss, L. M., Medeiros, L. J. & Vickery, A. L. Jr. Pathologic features of prognostic significance in adrenocortical carcinoma. Am. J. Surg. Pathol. 13, 202–206 (1989).

    CAS  PubMed  Google Scholar 

  14. Beuschlein, F. et al. Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection. J. Clin. Endocrinol. Metab. 100, 841–849 (2015). This study establishes the major role of cell proliferation in ACC prognosis.

    CAS  PubMed  Google Scholar 

  15. Morimoto, R. et al. Immunohistochemistry of a proliferation marker Ki67/MIB1 in adrenocortical carcinomas: Ki67/MIB1 labeling index is a predictor for recurrence of adrenocortical carcinomas. Endocr. J. 55, 49–55 (2008).

    PubMed  Google Scholar 

  16. Libe, R. et al. Prognostic factors in stage III-IV adrenocortical carcinomas (ACC): an European Network for the Study of Adrenal Tumor (ENSAT) study. Ann. Oncol. 26, 2119–2125 (2015).

    CAS  PubMed  Google Scholar 

  17. Fassnacht, M. et al. Improved survival in patients with stage II adrenocortical carcinoma followed up prospectively by specialized centers. J. Clin. Endocrinol. Metab. 95, 4925–4932 (2010).

    CAS  PubMed  Google Scholar 

  18. Lubitz, J. A., Freeman, L. & Okun, R. Mitotane use in inoperable adrenal cortical carcinoma. JAMA 223, 1109–1112 (1973).

    CAS  PubMed  Google Scholar 

  19. Fassnacht, M., Libe, R., Kroiss, M. & Allolio, B. Adrenocortical carcinoma: a clinician’s update. Nat. Rev. Endocrinol. 7, 323–335 (2011).

    CAS  PubMed  Google Scholar 

  20. Berruti, A. et al. Adjuvant therapy in patients with adrenocortical carcinoma: a position of an international panel. J. Clin. Oncol. 28, e401–e402 (2010).

    PubMed  Google Scholar 

  21. Terzolo, M. et al. Adjuvant mitotane treatment for adrenocortical carcinoma. N. Engl. J. Med. 356, 2372–2380 (2007).

    CAS  PubMed  Google Scholar 

  22. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00777244 (2019).

  23. Megerle, F. et al. Mitotane monotherapy in patients with advanced adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 103, 1686–1695 (2018).

    PubMed  Google Scholar 

  24. Fassnacht, M. et al. Combination chemotherapy in advanced adrenocortical carcinoma. N. Engl. J. Med. 366, 2189–2197 (2012). This paper reports the first randomized study in ACC.

    CAS  PubMed  Google Scholar 

  25. Creemers, S. G. et al. Future directions in the diagnosis and medical treatment of adrenocortical carcinoma. Endocr. Relat. Cancer 23, R43–R69 (2016).

    CAS  PubMed  Google Scholar 

  26. Le Tourneau, C. et al. Avelumab in patients with previously treated metastatic adrenocortical carcinoma: phase 1b results from the JAVELIN solid tumor trial. J. Immunother. Cancer 6, 111 (2018). This paper is the most relevant study on treatment with anti-PD-L1 antibody in ACC.

    PubMed  PubMed Central  Google Scholar 

  27. Henning, J. E. K. et al. Gemcitabine-based chemotherapy in adrenocortical carcinoma: a multicenter study of efficacy and predictive factors. J. Clin. Endocrinol. Metab. 102, 4323–4332 (2017).

    PubMed  Google Scholar 

  28. Fassnacht, M. et al. Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomised, phase 3 study. Lancet Oncol. 16, 426–435 (2015). This study is the first randomized placebo controlled study in ACC.

    CAS  PubMed  Google Scholar 

  29. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng, S. et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 29, 723–736 (2016). This report presents the largest and most comprehensive molecular analysis of ACC.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hines, J. M. et al. High-resolution, accurate-mass (HRAM) mass spectrometry urine steroid profiling in the diagnosis of adrenal disorders. Clin. Chem. 63, 1824–1835 (2017).

    CAS  PubMed  Google Scholar 

  32. Taylor, D. R. et al. A 13-steroid serum panel based on LC-MS/MS: use in detection of adrenocortical carcinoma. Clin. Chem. 63, 1836–1846 (2017).

    CAS  PubMed  Google Scholar 

  33. Akerstrom, T., Carling, T., Beuschlein, F. & Hellman, P. Genetics of adrenocortical tumours. J. Intern. Med. 280, 540–550 (2016).

    CAS  PubMed  Google Scholar 

  34. Faillot, S. & Assie, G. Endocrine tumours: the genomics of adrenocortical tumors. Eur. J. Endocrinol. 174, R249–R265 (2016).

    CAS  PubMed  Google Scholar 

  35. Assie, G. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46, 607–612 (2014). This paper presents the first pan-molecular characterization of a large number of ACC tumours.

    CAS  PubMed  Google Scholar 

  36. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291–304 (2018). This paper reports a pan-cancer analysis of 10,000 cancer cases that puts ACC in perspective.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Crona, J. et al. RNA-sequencing analysis of adrenocortical carcinoma, pheochromocytoma and paraganglioma from a pan-cancer perspective. Cancers 10, 518 (2018).

    PubMed Central  Google Scholar 

  38. Else, T. & Rodriguez-Galindo, C. 5th International ACC Symposium: hereditary predisposition to childhood ACC and the associated molecular phenotype: 5th International ACC Symposium Session: not just for kids! Hormones Cancer 7, 36–39 (2016).

    CAS  PubMed  Google Scholar 

  39. Wasserman, J. D. et al. Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: a children’s oncology group study. J. Clin. Oncol. 33, 602–609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    CAS  PubMed  Google Scholar 

  41. Huang, K. L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Raymond, V. M. et al. Prevalence of germline TP53 mutations in a prospective series of unselected patients with adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 98, E119–E125 (2013).

    CAS  PubMed  Google Scholar 

  43. Herrmann, L. J. et al. TP53 germline mutations in adult patients with adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 97, E476–E485 (2012).

    CAS  PubMed  Google Scholar 

  44. Raymond, V. M. et al. Adrenocortical carcinoma is a lynch syndrome-associated cancer. J. Clin. Oncol. 31, 3012–3018 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Weksberg, R., Shuman, C. & Beckwith, J. B. Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 18, 8–14 (2010).

    PubMed  Google Scholar 

  46. Skogseid, B. et al. Adrenal lesion in multiple endocrine neoplasia type 1. Surgery 118, 1077–1082 (1995).

    CAS  PubMed  Google Scholar 

  47. Gatta-Cherifi, B. et al. Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d’etude des Tumeurs Endocrines database. Eur. J. Endocrinol. 166, 269–279 (2012).

    CAS  PubMed  Google Scholar 

  48. Naylor, E. W. & Gardner, E. J. Adrenal adenomas in a patient with Gardner’s syndrome. Clin. Genet. 20, 67–73 (1981).

    CAS  PubMed  Google Scholar 

  49. Pilati, C. et al. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. J. Pathol. 242, 10–15 (2017).

    CAS  PubMed  Google Scholar 

  50. Morin, E. et al. Carney complex with adrenal cortical carcinoma. J. Clin. Endocrinol. Metab. 97, E202–E206 (2012).

    CAS  PubMed  Google Scholar 

  51. Sidhu, S. et al. Comparative genomic hybridization analysis of adrenocortical tumors. J. Clin. Endocrinol. Metab. 87, 3467–3474 (2002).

    CAS  PubMed  Google Scholar 

  52. Kjellman, M. et al. Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. J. Clin. Endocrinol. Metab. 84, 730–735 (1999).

    CAS  PubMed  Google Scholar 

  53. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, T. et al. The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors. Endocr. Relat. Cancer 21, 427–434 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Juhlin, C. C. et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 100, E493–E502 (2015).

    CAS  PubMed  Google Scholar 

  56. Barthel, F. P. et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 49, 349–357 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Else, T., Giordano, T. J. & Hammer, G. D. Evaluation of telomere length maintenance mechanisms in adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 93, 1442–1449 (2008).

    CAS  PubMed  Google Scholar 

  58. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Knijnenburg, T. A. et al. Genomic and molecular landscape of DNA damage repair deficiency across the Cancer Genome Atlas. Cell Rep. 23, 239–254 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ross, J. S. et al. Next-generation sequencing of adrenocortical carcinoma reveals new routes to targeted therapies. J. Clin. Pathol. 67, 968–973 (2014).

    CAS  PubMed  Google Scholar 

  62. De Martino, M. C. et al. Molecular screening for a personalized treatment approach in advanced adrenocortical cancer. J. Clin. Endocrinol. Metab. 98, 4080–4088 (2013).

    PubMed  Google Scholar 

  63. Lippert, J. et al. Targeted molecular analysis in adrenocortical carcinomas: a strategy towards improved personalized prognostication. J. Clin. Endocrinol. Metab. 103, 4511–4523 (2018). This paper presents the first comprehensive validation of ENS@T and TCGA studies.

    PubMed  Google Scholar 

  64. Vatrano, S. et al. Detailed genomic characterization identifies high heterogeneity and histotype-specific genomic profiles in adrenocortical carcinomas. Mod. Pathol. 31, 1257–1269 (2018).

    CAS  PubMed  Google Scholar 

  65. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gara, S. K. et al. Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors. Nat. Commun. 9, 4172 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Pinto, E. M. et al. Genomic landscape of paediatric adrenocortical tumours. Nat. Commun. 6, 6302 (2015). This report is the largest and most comprehensive genetic characterization of paediatric ACC tumours.

    CAS  PubMed  Google Scholar 

  68. Giordano, T. J. et al. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin. Cancer Res. 15, 668–676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. de Reynies, A. et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J. Clin. Oncol. 27, 1108–1115 (2009).

    PubMed  Google Scholar 

  70. Lalli, E. Adrenocortical development and cancer: focus on SF-1. J. Mol. Endocrinol. 44, 301–307 (2010).

    CAS  PubMed  Google Scholar 

  71. Barreau, O. et al. Identification of a CpG island methylator phenotype in adrenocortical carcinomas. J. Clin. Endocrinol. Metab. 98, E174–E184 (2013).

    CAS  PubMed  Google Scholar 

  72. Jouinot, A. et al. DNA methylation is an independent prognostic marker of survival in adrenocortical cancer. J. Clin. Endocrinol. Metab. 102, 923–932 (2017).

    PubMed  Google Scholar 

  73. Mohan, D. R. et al. Targeted assessment of G0S2 methylation identifies a rapidly recurrent, routinely fatal molecular subtype of adrenocortical carcinoma. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.ccr-18-2693 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tissier, F. et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 65, 7622–7627 (2005).

    CAS  PubMed  Google Scholar 

  75. Creemers, S. G. et al. Identification of mutations in cell-free circulating tumor DNA in adrenocortical carcinoma: a case series. J. Clin. Endocrinol. Metab. 102, 3611–3615 (2017).

    PubMed  Google Scholar 

  76. Garinet, S. et al. Detection and monitoring of circulating tumor DNA in adrenocortical carcinoma. Endocr. Relat. Cancer 25, L13–L17 (2018).

    CAS  PubMed  Google Scholar 

  77. Pinzani, P. et al. Detection of circulating tumor cells in patients with adrenocortical carcinoma: a monocentric preliminary study. J. Clin. Endocrinol. Metab. 98, 3731–3738 (2013).

    CAS  PubMed  Google Scholar 

  78. Patel, D. et al. MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors. Surgery 154, 1224–1228 (2013).

    PubMed  Google Scholar 

  79. Chabre, O. et al. Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr. Relat. Cancer 20, 579–594 (2013).

    CAS  PubMed  Google Scholar 

  80. Szabo, D. R. et al. Analysis of circulating microRNAs in adrenocortical tumors. Lab. Invest. 94, 331–339 (2014).

    CAS  PubMed  Google Scholar 

  81. Perge, P. et al. Analysis of circulating extracellular vesicle-associated microRNAs in cortisol-producing adrenocortical tumors. Endocr 59, 280–287 (2018).

    CAS  Google Scholar 

  82. Perge, P. et al. Evaluation and diagnostic potential of circulating extracellular vesicle-associated microRNAs in adrenocortical tumors. Sci. Rep. 7, 5474 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Arlt, W. et al. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 96, 3775–3784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bancos, I. & Arlt, W. Diagnosis of a malignant adrenal mass: the role of urinary steroid metabolite profiling. Curr. Opin. Endocrinol. Diabetes Obes. 24, 200–207 (2017).

    CAS  PubMed  Google Scholar 

  85. Sbiera, S. et al. Assessment of VAV2 expression refines prognostic prediction in adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 102, 3491–3498 (2017).

    PubMed  Google Scholar 

  86. Pinto, E. M. et al. Identification of clinical and biologic correlates associated with outcome in children with adrenocortical tumors without germline TP53 mutations: a St Jude Adrenocortical Tumor Registry and Children’s Oncology Group Study. J. Clin. Oncol. 35, 3956–3963 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Terzolo, M. et al. Mitotane levels predict the outcome of patients with adrenocortical carcinoma treated adjuvantly following radical resection. Eur. J. Endocrinol. 169, 263–270 (2013).

    CAS  PubMed  Google Scholar 

  88. Hermsen, I. G. et al. Plasma concentrations of o, p’DDD, o, p’DDA, and o, p’DDE as predictors of tumor response to mitotane in adrenocortical carcinoma: results of a retrospective ENS@T multicenter study. J. Clin. Endocrinol. Metab. 96, 1844–1851 (2011).

    CAS  PubMed  Google Scholar 

  89. Sbiera, S. et al. Mitotane inhibits sterol-O-acyl transferase 1 triggering lipid-mediated endoplasmic reticulum stress and apoptosis in adrenocortical carcinoma cells. Endocrinology 156, 3895–3908 (2015). This paper proposes SOAT1 as the molecular target of mitotane and remains to be validated.

    CAS  PubMed  Google Scholar 

  90. Ronchi, C. L. et al. Expression of excision repair cross complementing group 1 and prognosis in adrenocortical carcinoma patients treated with platinum-based chemotherapy. Endocr. Relat. Cancer 16, 907–918 (2009).

    CAS  PubMed  Google Scholar 

  91. Malandrino, P. et al. Prognostic markers of survival after combined mitotane- and platinum-based chemotherapy in metastatic adrenocortical carcinoma. Endocr. Relat. Cancer 17, 797–807 (2010).

    CAS  PubMed  Google Scholar 

  92. Laufs, V. et al. ERCC1 as predictive biomarker to platinum-based chemotherapy in adrenocortical carcinomas. Eur. J. Endocrinol. 178, 183–190 (2018).

    Google Scholar 

  93. Roca, E. et al. Topoisomerase 2alpha and thymidylate synthase expression in adrenocortical cancer. Endocr. Relat. Cancer 24, 299–307 (2017).

    Google Scholar 

  94. Ruggiero, C. et al. Dosage-dependent regulation of VAV2 expression by steroidogenic factor-1 drives adrenocortical carcinoma cell invasion. Sci. Signal. 10, eaal2464 (2017).

    PubMed  Google Scholar 

  95. Fiorentini, C. et al. Antisecretive and antitumor activity of abiraterone acetate in human adrenocortical cancer: a preclinical study. J. Clin. Endocrinol. Metab. 101, 4594–4602 (2016).

    CAS  PubMed  Google Scholar 

  96. Hahner, S. et al. [131I]iodometomidate for targeted radionuclide therapy of advanced adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 97, 914–922 (2012).

    CAS  PubMed  Google Scholar 

  97. Dominick, M. A. et al. Subacute toxicity of a novel inhibitor of acyl-CoA: cholesterol acyltransferase in beagle dogs. Fundam. Appl. Toxicol. 20, 217–224 (1993).

    CAS  PubMed  Google Scholar 

  98. LaPensee, C. R. et al. ATR-101, a selective and potent inhibitor of acyl-CoA acyltransferase 1, induces apoptosis in H295R adrenocortical cells and in the adrenal cortex of dogs. Endocrinology 157, 1775–1788 (2016).

    CAS  PubMed  Google Scholar 

  99. Langlois, D. K. et al. ATR-101, a selective ACAT1 inhibitor, decreases ACTH-stimulated cortisol concentrations in dogs with naturally occurring Cushing’s syndrome. BMC Endocr. Disord. 18, 24 (2018). This paper provides proof of concept for ATR-101 as a novel agent for the treatment of endocrine disorders.

    PubMed  PubMed Central  Google Scholar 

  100. Winqvist, O., Karlsson, F. A. & Kampe, O. 21-hydroxylase, a major autoantigen in idiopathic Addison’s disease. Lancet 339, 1559–1562 (1992).

    CAS  PubMed  Google Scholar 

  101. Tamborero, D. et al. A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin. Cancer Res. 24, 3717–3728 (2018).

    CAS  PubMed  Google Scholar 

  102. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Connell, C. M. et al. Cancer immunotherapy trial registrations increase exponentially but chronic immunosuppressive glucocorticoid therapy may compromise outcomes. Ann. Oncol. 28, 1678–1679 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cosentini, D. et al. Immunotherapy failure in adrenocortical cancer: where next? Endocr. Connect. 7, E5–E8 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Papewalis, C. et al. Dendritic cells as potential adjuvant for immunotherapy in adrenocortical carcinoma. Clin. Endocrinol. 65, 215–222 (2006).

    CAS  Google Scholar 

  106. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02465060 (2019).

  107. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02925234 (2019).

  108. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03583710 (2019).

  109. Hazim, A. & Prasad, V. A pooled analysis of published, basket trials in cancer medicine. Eur. J. Cancer 101, 244–250 (2018).

    PubMed  Google Scholar 

  110. Kroiss, M., Quinkler, M., Lutz, W. K., Allolio, B. & Fassnacht, M. Drug interactions with mitotane by induction of CYP3A4 metabolism in the clinical management of adrenocortical carcinoma. Clin. Endocrinol. 75, 585–591 (2011).

    CAS  Google Scholar 

  111. Berruti, A. et al. Adrenal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23, vii131–vii138 (2012).

    PubMed  Google Scholar 

  112. Fiorentini, C. et al. Palbociclib inhibits proliferation of human adrenocortical tumor cells. Endocrine 59, 213–217 (2018).

    CAS  PubMed  Google Scholar 

  113. Hadjadj, D. et al. A hypothesis-driven approach identifies CDK4 and CDK6 inhibitors as candidate drugs for treatments of adrenocortical carcinomas. Aging 9, 2695–2716 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00011 (2017).

    Article  Google Scholar 

  115. Flynn, R. L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Koschmann, C. et al. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci. Transl Med. 8, 328ra28 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Thomas, A. et al. Phase I study of ATR inhibitor M6620 in combination with topotecan in patients with advanced solid tumors. J. Clin. Oncol. 36, 1594–1602 (2018).

    CAS  PubMed  Google Scholar 

  118. Dombi, E. et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N. Engl. J. Med. 375, 2550–2560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366, 1382–1392 (2012).

    CAS  PubMed  Google Scholar 

  120. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Robson, M. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377, 523–533 (2017).

    CAS  PubMed  Google Scholar 

  122. Hainsworth, J. D. et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J. Clin. Oncol. 36, 536–542 (2018).

    CAS  PubMed  Google Scholar 

  123. Ronchi, C. L. et al. Notch1 pathway in adrenocortical carcinomas: correlations with clinical outcome. Endocr. Relat. Cancer 22, 531–543 (2015).

    CAS  PubMed  Google Scholar 

  124. Simon, D. P., Giordano, T. J. & Hammer, G. D. Upregulated JAG1 enhances cell proliferation in adrenocortical carcinoma. Clin. Cancer Res. 18, 2452–2464 (2012).

    CAS  PubMed  Google Scholar 

  125. Tuxen, I. V. et al. Copenhagen Prospective Personalized Oncology (CoPPO) — clinical utility of using molecular profiling to select patients to phase I trials. Clin. Cancer Res. 25, 1239–1247 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

J.C. acknowledges the support of Akademiska Sjukhuset, Cancerfonden, Tore Nilsons Stiftelse and Wallenberg Stiftelsen. F.B. acknowledges the support of the Deutsche Forschungsgemeinschaft (DFG) within the CRC/Transregio 205/1 (‘The Adrenal: Central Relay in Health and Disease’).

Reviewer information

Nature Reviews Endocrinology thanks R. Ribeiro and other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Joakim Crona or Felix Beuschlein.

Ethics declarations

Competing interests

J.C. received lecture honoraria from Novartis and honoraria for educational material from NET Connect (funded by Ipsen). F.B. has received funding from HRA Pharma and Ipsen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

OncoKB Precision Oncology Knowledge Database: http://oncokb.org/

Glossary

R0 resection

Absence of cancer cells at the resection margin by microscopic analysis.

Neoadjuvant treatment

Ancillary therapy administered before main therapy.

Adjuvant therapy

Ancillary therapy administered after main therapy.

Adrenal adenomas

Benign tumour lesions of the adrenal cortex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crona, J., Beuschlein, F. Adrenocortical carcinoma — towards genomics guided clinical care. Nat Rev Endocrinol 15, 548–560 (2019). https://doi.org/10.1038/s41574-019-0221-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0221-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing