Research articles

Filter By:

  • Hydrogen produced by water splitting using renewable electricity is key to achieve net-zero carbon emissions. Decoupling hydrogen and oxygen evolution reactions during electrolysis is attractive but efficiency and operational challenges remain. A process producing hydrogen and oxygen in separate cells and supporting continuous operation in a membraneless system is now proposed.

    • Ilya Slobodkin
    • Elena Davydova
    • Avner Rothschild
    ArticleOpen Access
  • The authors propose a non-Hermitian topological insulator with a real-valued energy spectrum based on a periodically driven Floquet model implemented in a photonic platform where generalized parity–time symmetry is protected against spontaneous symmetry breaking under a spatiotemporal gain and loss distribution.

    • Alexander Fritzsche
    • Tobias Biesenthal
    • Alexander Szameit
    ArticleOpen Access
  • Propagation losses have limited the practical use of polaritons in photonic applications. Here the authors demonstrate a substantial enhancement in the propagation distance of phonon polaritons, employing synthetic optical excitation of complex frequency with virtual gain synthesized by combining multiple real frequency measurements.

    • Fuxin Guan
    • Xiangdong Guo
    • Shuang Zhang
    Article
  • The local layer alignment in a wide range of trilayer graphene structures has been extracted by interferometric four-dimensional scanning transmission electron microscopy, uncovering the complex picture of lattice reconstruction in twisted trilayers.

    • Isaac M. Craig
    • Madeline Van Winkle
    • D. Kwabena Bediako
    Article
  • The metal monochalcogenides are a group of van der Waals layered semiconductors with ultra-high plasticity. It is now revealed that their plasticity is attributed to the ability to transform their stacking order or phases, coupled with the concurrent generation of a micro-crack network.

    • Lok Wing Wong
    • Ke Yang
    • Jiong Zhao
    Article
  • Employing light-transformable polymers, multiple physical unclonable functions are demonstrated within a single device with all-optical reversible reconfigurability. Such devices may enable quantum secure authentication and nonlinear cryptographic key generation applications.

    • Sara Nocentini
    • Ulrich Rührmair
    • Francesco Riboli
    Article
  • Current organic proton detectors have poor detection sensitivities due to low light yields and limited radiation toleration. Here the authors report a perovskite nanocrystal-based transmissive thin scintillator that can detect seven protons per second, enabled by radiative emission from biexcitons.

    • Zhaohong Mi
    • Hongyu Bian
    • Xiaogang Liu
    ArticleOpen Access
  • Biological tissues are extremely water rich but remain mechanically stiff, behaviour that is difficult to recapitulate in synthetic materials. Here the authors design a hydrogel/sponge hybrid material driven by a self-organized network of cyano-p-aramid nanofibres that combines these properties for biofunctional materials.

    • Minkyung Lee
    • Hojung Kwak
    • Dongyeop X. Oh
    Article
  • Multiferroics can possess multiple ferroic orders, for example, electric polarization and magnetism, and are of interest for new device applications. Here thermal control is shown to manipulate electric and magnetic orders in a single-phase quasi-two-dimensional halide perovskite.

    • Tong Zhu
    • Xue-Zeng Lu
    • Hiroshi Kageyama
    Letter
  • The authors imprint a moiré potential on a remote monolayer semiconductor through the moiré potential created in a remote MoSe2/WS2 moiré bilayer. The imprinted moiré potential enables gate-controlled generation of flat bands and correlated insulating states in the targeted monolayer.

    • Jie Gu
    • Jiacheng Zhu
    • Kin Fai Mak
    Article
  • Autonomous assembly, reconfiguration and disassembly are observed in living aggregates, but are difficult to replicate in synthetic soft matter. Here mechanically interlocked responsive ribbons form transient viscoelastic solids for the on-demand assembly of functional materials.

    • Mustafa K. Abdelrahman
    • Robert J. Wagner
    • Taylor H. Ware
    Article
  • Employing nonlinear, time-resolved terahertz spectroscopy to study condensate dynamics on Ta2NiSe5—a narrow-bandgap semiconductor and putative excitonic insulator—the authors reveal enhanced terahertz reflectivity upon photoexcitation and condensation-like temperature dependence below the structural transition critical temperature.

    • Sheikh Rubaiat Ul Haque
    • Marios H. Michael
    • Richard D. Averitt
    Article
  • The authors combine laser excitation and scanning tunnelling spectroscopy to visualize the electron and hole distributions in photoexcited moiré excitons in twisted bilayer WS2. This photocurrent tunnelling microscopy approach enables the study of photoexcited non-equilibrium moiré phenomena at atomic scales.

    • Hongyuan Li
    • Ziyu Xiang
    • Feng Wang
    Article
  • Plastic deformation requires the propagation of a kinked profile along dislocations. It is shown that each kink acts as a set of travelling thermal spikes, favouring the nucleation of supplementary kinks and long dislocation jumps that are observed experimentally.

    • Laurent Proville
    • Anshuman Choudhury
    Letter
  • The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on dopant transport, but strong electrostatic gradients and space charges typically control the properties of surfaces. The surface–dopant interaction is shown to be the main determining factor for the exsolution kinetics of nickel in a perovskite system.

    • Moritz L. Weber
    • Břetislav Šmíd
    • Christian Lenser
    ArticleOpen Access