Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels

Abstract

The structure–property paradox of biological tissues, in which water-rich porous structures efficiently transfer mass while remaining highly mechanically stiff, remains unsolved. Although hydrogel/sponge hybridization is the key to understanding this phenomenon, material incompatibility makes this a challenging task. Here we describe hydrogel/sponge hybrids (hydrospongels) that behave as both ultrastiff water-rich gels and reversibly squeezable sponges. The self-organizing network of cyano-p-aramid nanofibres holds approximately 5,000 times more water than its solid content. Hydrospongels, even at a water concentration exceeding 90 wt%, are hard as cartilage with an elastic modulus of 50−80 MPa, and are 10–1,000 times stiffer than typical hydrogels. They endure a compressive strain above 85% through poroelastic relaxation and hydrothermal pressure at 120 °C. This performance is produced by amphiphilic surfaces, high rigidity and an interfibrillar, interaction-driven percolating network of nanofibres. These features can inspire the development of future biofunctional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual images of a CY-ANF hydrospongel.
Fig. 2: Self-assembly behaviour and fibrillar structures of K-ANFs and CY-ANFs.
Fig. 3: The dual modes of a CY-ANF hydrospongel.
Fig. 4: The mechanical properties of CY-ANF hydrospongels at low strains.
Fig. 5: Mechanical compression and recovery properties of a CY-ANF hydrospongel.
Fig. 6: The viscoelastic and poroelastic relaxation times of a CY-ANF hydrospongel.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available within the Article and its Supplementary Information, or from the corresponding authors on reasonable request. Source data are provided with this paper. They are also available via Figshare at https://doi.org/10.6084/m9.figshare.24418129.

References

  1. Annabi, N. et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 26, 85–124 (2014).

    CAS  PubMed  Google Scholar 

  2. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, X. et al. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 434–437 (2017).

    ADS  CAS  PubMed  Google Scholar 

  4. Hua, Y. et al. Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy. Sci. Adv. 7, eabg0628 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cianchetti, M., Laschi, C., Menciassi, A. & Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 3, 143–153 (2018).

    ADS  Google Scholar 

  6. Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).

    ADS  CAS  Google Scholar 

  7. Chen, J., Peng, Q., Thundat, T. & Zeng, H. Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics. Chem. Mater. 31, 4553–4563 (2019).

    CAS  Google Scholar 

  8. Shin, S.-H. et al. Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chem. Eng. J. 371, 452–460 (2019).

    ADS  CAS  Google Scholar 

  9. Lee, Y., Song, W. & Sun, J.-Y. Hydrogel soft robotics. Mater. Today Phys. 15, 100258 (2020).

    Google Scholar 

  10. Ohm, Y. et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4, 185–192 (2021).

    CAS  Google Scholar 

  11. Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balakrishnan, B. & Banerjee, R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev. 111, 4453–4474 (2011).

    CAS  PubMed  Google Scholar 

  13. Wang, W., Zhang, Y. & Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 71, 1–25 (2017).

    Google Scholar 

  14. Liu, J. et al. Fatigue-resistant adhesion of hydrogels. Nat. Commun. 11, 1071 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Obeid, E., Adams, M. & Newman, J. Mechanical properties of articular cartilage in knees with unicompartmental osteoarthritis. J. Bone Jt Surg. 76, 315–319 (1994).

    CAS  Google Scholar 

  16. Williamson, A. K., Chen, A. C., Masuda, K., Thonar, E. J. M. & Sah, R. L. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J. Orthop. Res. 21, 872–880 (2003).

    CAS  PubMed  Google Scholar 

  17. Nakayama, A. et al. High mechanical strength double‐network hydrogel with bacterial cellulose. Adv. Funct. Mater. 14, 1124–1128 (2004).

    CAS  Google Scholar 

  18. Simha, N., Carlson, C. & Lewis, J. Evaluation of fracture toughness of cartilage by micropenetration. J. Mater. Sci. Mater. Med. 15, 631–639 (2004).

    CAS  PubMed  Google Scholar 

  19. Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yao, W., Geng, C., Han, D., Chen, F. & Fu, Q. Strong and conductive double-network graphene/PVA gel. RSC Adv. 4, 39588–39595 (2014).

    ADS  CAS  Google Scholar 

  21. Zhuang, Y. et al. Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J. Mater. Chem. A 4, 10885–10892 (2016).

    CAS  Google Scholar 

  22. Li, X. et al. Strong, tough and mechanically self-recoverable poly (vinyl alcohol)/alginate dual-physical double-network hydrogels with large cross-link density contrast. RSC Adv. 8, 16674–16689 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, L., Zhao, X., Xu, C. & Kotov, N. A. Water‐rich biomimetic composites with abiotic self‐organizing nanofiber network. Adv. Mater. 30, 1703343 (2018).

    Google Scholar 

  24. Zhu, J. et al. Branched aramid nanofibers. Angew. Chem. Int. Ed. 56, 11744–11748 (2017).

    ADS  CAS  Google Scholar 

  25. Zhao, Y., Li, X., Shen, J., Gao, C. & Van der Bruggen, B. The potential of Kevlar aramid nanofiber composite membranes. J. Mater. Chem. A 8, 7548–7568 (2020).

    CAS  Google Scholar 

  26. Xie, C., Guo, Z. X., Qiu, T. & Tuo, X. Construction of aramid engineering materials via polymerization‐induced para‐aramid nanofiber hydrogel. Adv. Mater. 33, 2101280 (2021).

    CAS  Google Scholar 

  27. Hu, Y. & Suo, Z. Viscoelasticity and poroelasticity in elastomeric gels. Acta Mech. Solida Sin. 25, 441–458 (2012).

    Google Scholar 

  28. Xu, Q., Wilen, L. A., Jensen, K. E., Style, R. W. & Dufresne, E. R. Viscoelastic and poroelastic relaxations of soft solid surfaces. Phys. Rev. Lett. 125, 238002 (2020).

    ADS  CAS  PubMed  Google Scholar 

  29. Koo, J. M. et al. Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability. Macromolecules 52, 923–934 (2019).

    ADS  CAS  Google Scholar 

  30. Park, S.-A. et al. Aramid nanofiber templated in situ SNAr polymerization for maximizing the performance of all-organic nanocomposites. ACS Macro Lett. 9, 558–564 (2020).

    CAS  PubMed  Google Scholar 

  31. Hanif, Z. et al. Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. J. Polym. Res. 25, 191 (2018).

    Google Scholar 

  32. Kim, H.-J., Roy, S. & Rhim, J.-W. Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. J. Environ. Chem. Eng. 9, 106043 (2021).

    CAS  Google Scholar 

  33. Shin, S. H. et al. Malleable hydrogel embedded with micellar cargo‐expellers as a prompt transdermal patch. Adv. Healthc. Mater. 9, 2000876 (2020).

    CAS  Google Scholar 

  34. Lin, S., Sangaj, N., Razafiarison, T., Zhang, C. & Varghese, S. Influence of physical properties of biomaterials on cellular behavior. Pharm. Res. 28, 1422–1430 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mori, Y. et al. Usefulness of agarose mold as a storage container for three-dimensional tissue-engineered cartilage. Mater. Sci. Appl. 4, 73–78 (2013).

    Google Scholar 

  36. Yang, C. H. et al. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 5, 10418–10422 (2013).

    CAS  PubMed  Google Scholar 

  37. Yang, X., Abe, K., Biswas, S. K. & Yano, H. Extremely stiff and strong nanocomposite hydrogels with stretchable cellulose nanofiber/poly (vinyl alcohol) networks. Cellulose 25, 6571–6580 (2018).

    CAS  Google Scholar 

  38. Vecchio, D. A., Mahler, S. H., Hammig, M. D. & Kotov, N. A. Structural analysis of nanoscale network materials using graph theory. ACS Nano 15, 12847–12859 (2021).

    CAS  PubMed  Google Scholar 

  39. Vecchio, D. A. et al. Spanning network gels from nanoparticles and graph theoretical analysis of their structure and properties. Adv. Mater. 34, e2201313 (2022).

    PubMed  Google Scholar 

  40. Kamata, H., Akagi, Y., Kayasuga-Kariya, Y., Chung, U.-I. & Sakai, T. “Nonswellable” hydrogel without mechanical hysteresis. Science 343, 873–875 (2014).

    ADS  CAS  PubMed  Google Scholar 

  41. Kamata, H., Kushiro, K., Takai, M., Chung, U. I. & Sakai, T. Non‐osmotic hydrogels: a rational strategy for safely degradable hydrogels. Angew. Chem. Int. Ed. 55, 9282–9286 (2016).

    CAS  Google Scholar 

  42. Dong, H., Snyder, J. F., Williams, K. S. & Andzelm, J. W. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 14, 3338–3345 (2013).

    CAS  PubMed  Google Scholar 

  43. Junchao, H., Yi, Z. & Jie, C. Extremely strong and transparent chitin films: a high‐efficiency, energy‐saving, and “green” route using an aqueous KOH/urea solution. Adv. Funct. Mater. 27, 1701100 (2017).

    Google Scholar 

  44. Caccavo, D., Cascone, S., Lamberti, G. & Barba, A. Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chem. Soc. Rev. 47, 2357–2373 (2018).

    CAS  PubMed  Google Scholar 

  45. Han, G., Hess, C., Eriten, M. & Henak, C. R. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage. J. Mech. Behav. Biomed. Mater. 84, 28–34 (2018).

    PubMed  Google Scholar 

  46. Kalcioglu, Z. I., Mahmoodian, R., Hu, Y., Suo, Z. & Van Vliet, K. J. From macro-to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8, 3393–3398 (2012).

    ADS  CAS  Google Scholar 

  47. Kim, H. et al. Remarkable elasticity and enzymatic degradation of bio-based poly (butylene adipate-co-furanoate): replacing terephthalate. Green Chem. 22, 7778–7787 (2020).

    CAS  Google Scholar 

  48. Noda, I. & Ozaki, Y. Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy (John Wiley & Sons, 2005).

  49. Eom, Y. et al. Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat. Commun. 12, 621 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, Q. et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 30, 1705479 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

H.K. acknowledges support from the KRICT Core Project (KS2342-10). D.X.O. acknowledges support from the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (2022R1C1C1003468 and 2022M3H4A1A03076577). J.P. acknowledges support from the NRF, funded by the Ministry of Science, ICT & Future Planning (2022R1C1C1004660, 2015M3D3A1A01064926 and GRDC Cooperative Hub (grant number RS-2023-00259341)). S.Y.H. acknowledges support from the NRF, funded by the Ministry of Science, ICT, & Future Planning (NRF-2022M3J4A1091450 and NRF-2021M3H4A3A02102349).

Author information

Authors and Affiliations

Authors

Contributions

M.L., H.K. and Y.E. performed the experiments and analysed the data. M.L., Y.E., H.K., J.P. and D.X.O. prepared the figures and wrote the manuscript. S.-A.P, H.J., J.M.K. and C.C. analysed the materials. M.L. and H.K. performed the hydrogel swelling tests. D.K. performed the experiments on the carbon nanotube/hydrospongel composite. T.S. contributed to conceptualizing the idea and analysis of the non-swelling behaviour. J.P. and D.X.O. conceived and designed the project. S.Y.H. managed the project finances. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Sung Yeon Hwang, Jeyoung Park or Dongyeop X. Oh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xinlin Tuo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Tables 1–11 and Notes 1–6.

Supplementary Video 1

Dialysis.

Supplementary Video 2

Boiling water.

Supplementary Video 3

Swelling test.

Source data

Source Data Fig. 2

Data underlying Fig. 2.

Source Data Fig. 3

Data underlying Fig. 3.

Source Data Fig. 4

Data underlying Fig. 4.

Source Data Fig. 5

Data underlying Fig. 5.

Source Data Fig. 6

Data underlying Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Kwak, H., Eom, Y. et al. Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels. Nat. Mater. 23, 414–423 (2024). https://doi.org/10.1038/s41563-023-01760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01760-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing