Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deciphering the ultra-high plasticity in metal monochalcogenides

Abstract

The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomic structures of various InSe phases (top and cross-section views) and writing capability as a pen.
Fig. 2: The structural evolution of 2H-InSe after mechanical deformation.
Fig. 3: Atomic structures near micro-cracks.
Fig. 4: In situ TEM experiments of InSe.
Fig. 5: Theoretical calculations.
Fig. 6: Schematics of the plastic deformation of MX materials.

Similar content being viewed by others

Data availability

All data in this article are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Petroski, H. M. C. The Pencil: A History of Design and Circumstance (Knopf, 2011).

  2. Kim, Y., Sung, A., Seo, Y., Hwang, S. & Kim, H. Measurement of hardness and friction properties of pencil leads for quantification of pencil hardness test. Adv. Appl. Ceram. 115, 443–448 (2016).

    Article  CAS  Google Scholar 

  3. Heissenbüttel, M.-C., Marauhn, P., Deilmann, T., Krüger, P. & Rohlfing, M. Nature of the excited states of layered systems and molecular excimers: exciplex states and their dependence on structure. Phys. Rev. B 99, 035425 (2019).

    Article  Google Scholar 

  4. Ermolaev, G. A. et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).

    Article  CAS  Google Scholar 

  5. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  6. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  7. Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

  8. Gao, Z. et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat. Commun. 13, 7491 (2022).

    Article  CAS  Google Scholar 

  9. Wang, Y., Szökölová, K., Nasir, M. Z. M., Sofer, Z. & Pumera, M. Electrochemistry of layered semiconducting AIIIBVI chalcogenides: indium monochalcogenides (InS, InSe, InTe). Chem. Cat. Chem. 11, 2634–2642 (2019).

    CAS  Google Scholar 

  10. Luxa, J., Wang, Y., Sofer, Z. & Pumera, M. Layered post-transition-metal dichalcogenides (X–M–M–X) and their properties. Chemistry 22, 18810–18816 (2016).

    Article  CAS  Google Scholar 

  11. Late, D. J. et al. GaS and GaSe ultrathin layer transistors. Adv. Mater. 24, 3549–3554 (2012).

    Article  CAS  Google Scholar 

  12. Feng, W., Zheng, W., Cao, W. & Hu, P. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26, 6587–6593 (2014).

    Article  CAS  Google Scholar 

  13. Wu, L. M. et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res. 13, 1127–1132 (2020).

    Article  CAS  Google Scholar 

  14. Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article  CAS  Google Scholar 

  15. Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

    Article  CAS  Google Scholar 

  16. Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  17. Zhong, F. et al. Substitutionally doped MoSe2 for high-performance electronics and optoelectronics. Small 17, 2102855 (2021).

    Article  CAS  Google Scholar 

  18. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  Google Scholar 

  19. Wu, E. et al. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 5, eaav3430 (2019).

    Article  CAS  Google Scholar 

  20. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    Article  CAS  Google Scholar 

  21. Iqbal, M. W. et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Electron mobility in monolayer WS2 encapsulated in hexagonal boron-nitride. Appl. Phys. Lett. 118, 102105 (2021).

    Article  CAS  Google Scholar 

  23. Fu, D. et al. Tuning the electrical transport of type II Weyl semimetal WTe2 nanodevices by Ga+ ion implantation. Sci. Rep. 7, 12688 (2017).

    Article  Google Scholar 

  24. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article  CAS  Google Scholar 

  25. Wang, H. et al. Orientation-dependent large plasticity of single-crystalline gallium selenide. Cell Rep. Phys. Sci. 3, 100816 (2022).

    Article  CAS  Google Scholar 

  26. Qiu, D., Chu, Y., Zeng, H., Xu, H. & Dan, G. Stretchable MoS2 electromechanical sensors with ultrahigh sensitivity and large detection range for skin-on monitoring. ACS Appl. Mater. Interfaces 11, 37035–37042 (2019).

    Article  CAS  Google Scholar 

  27. Sui, F. et al. Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun. 14, 36 (2023).

    Article  CAS  Google Scholar 

  28. Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    Article  Google Scholar 

  29. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    Article  CAS  Google Scholar 

  30. Vazirisereshk, M. R., Martini, A., Strubbe, D. A. & Baykara, M. Z. Solid lubrication with MoS2: a review. Lubricants 7, 57 (2019).

    Article  Google Scholar 

  31. Scharf, T. W. & Prasad, S. V. Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013).

    Article  CAS  Google Scholar 

  32. Berman, D., Erdemir, A. & Sumant, A. V. Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014).

    Article  CAS  Google Scholar 

  33. Guo, Y. et al. Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proc. Natl Acad. Sci. USA 116, 3437–3442 (2019).

    Article  CAS  Google Scholar 

  34. Grubb, P. M., Subbaraman, H., Park, S., Akinwande, D. & Chen, R. T. Inkjet printing of high performance transistors with micron order chemically set gaps. Sci. Rep. 7, 1202 (2017).

    Article  Google Scholar 

  35. Larson, N. M. et al. Rotational multimaterial printing of filaments with subvoxel control. Nature 613, 682–688 (2023).

    Article  CAS  Google Scholar 

  36. Berre, C. et al. Failure analysis of the effects of porosity in thermally oxidised nuclear graphite using finite element modelling. J. Nucl. Mater. 381, 1–8 (2008).

    Article  CAS  Google Scholar 

  37. Akimov, ІV., Sylovanyuk, V. P., Volchok, ІP. & Ivantyshyn, N. А Influence of the shape of graphite inclusions on the mechanical properties of iron–carbon alloys. Mater. Sci. 48, 620–627 (2013).

    Article  CAS  Google Scholar 

  38. Rudenko, A. N., Katsnelson, M. I. & Gornostyrev, Y. N. Dislocation structure and mobility in the layered semiconductor InSe: a first-principles study. 2D Mater. 8, 045028 (2021).

    Article  CAS  Google Scholar 

  39. Küpers, M. et al. Controlled crystal growth of indium selenide, In2Se3, and the crystal structures of α-In2Se3. Inorg. Chem. 57, 11775–11781 (2018).

    Article  Google Scholar 

  40. Grzonka, J., Claro, M. S., Molina-Sánchez, A., Sadewasser, S. & Ferreira, P. J. Novel polymorph of GaSe. Adv. Funct. Mater. 31, 2104965 (2021).

    Article  CAS  Google Scholar 

  41. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    Article  CAS  Google Scholar 

  42. Wang, H., Li, Q., Cui, T., Ma, Y. & Zou, G. Phase-transition mechanism of h-BN → w-BN from first principles. Solid State Commun. 149, 843–846 (2009).

    Article  CAS  Google Scholar 

  43. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    Article  CAS  Google Scholar 

  44. Hao, Q. et al. Phase identification and strong second harmonic generation in Pure ε-InSe and Its Alloys. Nano Lett. 19, 2634–2640 (2019).

    Article  CAS  Google Scholar 

  45. Sun, M. et al. ε-InSe single crystals grown by a horizontal gradient freeze method. Cryst. Eng. Comm. 22, 7864–7869 (2020).

    Article  CAS  Google Scholar 

  46. Yu, W. J., Lau, W. M., Chan, S. P., Liu, Z. F. & Zheng, Q. Q. Ab initio study of phase transformations in boron nitride. Phys. Rev. B 67, 014108 (2003).

    Article  Google Scholar 

  47. Sachdev, H., Haubner, R., Nöth, H. & Lux, B. Investigation of the c-BN/h-BN phase transformation at normal pressure. Diam. Relat. Mater. 6, 286–292 (1997).

    Article  CAS  Google Scholar 

  48. Dutta, A., Reid, C. & Heinrich, H. Simulation of incoherent scattering in high-angle annular dark-field scanning electron microscopy. Microsc. Microanal. 19, 852–853 (2013).

    Article  Google Scholar 

  49. Ly, T. H. et al. Hyperdislocations in van der Waals layered materials. Nano Lett. 16, 7807–7813 (2016).

    Article  CAS  Google Scholar 

  50. Caldwell, J. D. et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4, 1108–1114 (2010).

    Article  CAS  Google Scholar 

  51. Wong, L.-W. et al. Site-specific electrical contacts with the two-dimensional materials. Nat. Commun. 11, 3982 (2020).

    Article  CAS  Google Scholar 

  52. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  53. Jiang, J.-W. Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals (BoD–Books on Demand, 2017).

  54. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  CAS  Google Scholar 

  55. Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    Article  CAS  Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  57. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  58. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  59. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  60. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  61. Berland, K. & Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 89, 035412 (2014).

    Article  Google Scholar 

  62. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  63. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  64. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  65. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  66. Nelson, R. et al. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 41, 1931–1940 (2020).

    Article  CAS  Google Scholar 

  67. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349 (1952).

    Article  Google Scholar 

  68. Voigt, W. Lehrbuch der Kristallphysik (Textbook of Crystal Physics) (BG Teubner, 1928).

  69. Reuss, A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929).

    Article  CAS  Google Scholar 

  70. Kube, C. M. Elastic anisotropy of crystals. AIP Adv. 6, 095209 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 52173230, 52222218 and 52272045), the Research Grants Council of Hong Kong (grant no. AoE/P-701/20), the Hong Kong Research Grant Council General Research Fund (project nos. 15301623, 11312022, 15302522, 11300820 and 15302419), the City University of Hong Kong (project nos. 6000758, 9211308, 9667223 and 9678303), The Hong Kong Polytechnic University (project nos. 1-BE47, ZE0C and ZE2F), the Environment and Conservation Fund (project nos. 69/2021 and 34/2022), the Shenzhen Science, Technology and Innovation Commission (project no. JCYJ20200109110213442), The State Key Laboratory of Marine Pollution (SKLMP) Seed Collaborative Research Fund (grant no. SKLMP/SCRF/0037) and The Research Institute for Advanced Manufacturing of The Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., M.Y. and T.H.L. led and supervised this project. L.W.W. planned the project, wrote the original manuscript and conducted focused ion beam, STEM–HAADF, in situ TEM, molecular dynamics simulations and STEM simulations. H.Y.W., X.Z., C.-S.L., S.P.L., T.H.L. and J.Z. helped data analysis. L.W.W. and W.H. prepared the materials. L.W.W., W.H. and H.Y.W. contributed to the XRD. L.W.W., W.H. and C.S.T. collected Raman data. K.Y. and M.Y. calculated the DFT results. All authors read and approved the paper.

Corresponding authors

Correspondence to Thuc Hue Ly, Ming Yang or Jiong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Qi An, Changgu Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Raman spectra with corresponding optical images and a table of normalized peak intensity (%).

The orange crosses in the optical images indicate the laser excited position. The postdeformed InSe presents stronger E′(1) and weaker E″(2), representing 3R stacking. Exp. 4 displays a red shift with an extra peak at 199 cm−1 that attributes to some local 2R phase.

Source data

Extended Data Fig. 2 Low magnification TEM top views with selected area diffraction patterns (SAED).

a, Pristine InSe. b, Post-deformation InSe. Red circles show the selected area. Yellow circles in (a) highlight the stronger diffraction signal of {\(1\bar{2}10\)} of the pristine 2H-InSe. Scale bars: 2 µm (left), 10 1/nm (right).

Extended Data Fig. 3 Low magnification TEM cross-section views with SAED.

a, Pristine InSe. b, Post-deformation InSe. Red circles show the corresponding selected area. The average interlayer spacing is slightly shorter after deformation. Scale bars: 2 µm (left), 10 1/nm (right).

Extended Data Fig. 4 Top views of typical of low magnification STEM-HAADF after deformations.

a-f, InSe (a,b), MoS2 (c,d), and MoTe2 (e,f). Scale bars: 1 µm (a,c,e) and 200 nm (b,d,f). The orange arrows denote the serious fractures. InSe prefers relaxing strain by forming discrete micro-cracks, while MoS2 and MoTe2 prefer storing strain by dislocations, hence forming serious fracture eventually.

Extended Data Fig. 5 Cross-section view of typical low magnification STEM-HAADF after deformations.

a-i, InSe (a-c), MoS2 (d-f), and MoTe2 (g-i). InSe has significantly fewer large cracks than MoS2 and MoTe2. Scale bars: 2 µm (a-i).

Extended Data Fig. 6 Atomic cross-section views of post-deformation InSe near micro-cracks.

a, Full field of view of the post-deformed InSe supported by Si substrate. b-g, Corresponding atomic resolution STEM-HAADF highlighted by yellow boxes in (a). The grey scale (almost all the viewing area) represents 3R stacking while green, yellow, and blue in (f) highlight 3R’ stacking, phase boundary, and 2H stacking, respectively. Scale bars: 1 µm (a), 5 nm (b-g).

Extended Data Fig. 7 Atomic cross-section views of the post-deformed MoS2 near micro-cracks and defects.

a, The large field of view of the experimental MoTe2. b-e, Corresponding atomic resolution STEM-HAADF highlighted by yellow boxes in a, showing well 2H stacking. All the region demonstrates 2H stacking in MoS2 after deformation. Scale bars: 0.5 µm (a), 5 nm (b-e).

Extended Data Fig. 8 Atomic cross-section views of the post-deformed MoTe2 near micro-cracks and defects.

a, The large field of view of the experimental MoTe2. b-e, Corresponding atomic resolution STEM-HAADF highlighted by yellow boxes in a, showing well 2H stacking. All the region demonstrates 2H stacking in MoTe2 after deformation. Scale bars: 0.5 µm (a), 5 nm (b-e).

Extended Data Fig. 9 Cross-section views of the typical multilayer micro-cracks.

a, InSe. b, GaSe. Scale bars: 5 nm. The stacking near the few layers micro-cracks is mainly 3R stacking. The untransformed 2H stacking is highlighted in white in (b).

Extended Data Fig. 10 Strain analysis by geometric phase analysis of completely transformed 3R region, phase boundary and edge dislocation.

Scale bars: 2 nm. The 3R region after phase transition demonstrates strain relaxation, while the phase boundary and edge dislocation regions show strain concentration.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Tables 1–5, Notes 1–3 and references.

Supplementary Video 1

An outermost fracture during the in situ bending experiment.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, L.W., Yang, K., Han, W. et al. Deciphering the ultra-high plasticity in metal monochalcogenides. Nat. Mater. 23, 196–204 (2024). https://doi.org/10.1038/s41563-023-01788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01788-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing