Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal multiferroics in all-inorganic quasi-two-dimensional halide perovskites

Abstract

Multiferroic materials, particularly those possessing simultaneous electric and magnetic orders, offer a platform for design technologies and to study modern physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of unexplored materials, especially those offering different mechanisms for controlling electric and magnetic orders1. Here we demonstrate the simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)3Mn2Cl7, arising from a polar–antipolar transition, as evidenced using both X-ray and neutron powder diffraction data. Our density functional theory calculations indicate a possible polarization-switching path including a strong coupling between the electric and magnetic orders in our halide materials, suggesting a magnetoelectric coupling and a situation not realized in oxide analogues. We expect our findings to stimulate the exploration of non-oxide multiferroics and magnetoelectrics to open access to alternative mechanisms, beyond conventional electric and magnetic control, for coupling ferroic orders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure evolution of K3Mn2Cl7.
Fig. 2: Magnetic properties of K3Mn2Cl7.
Fig. 3: Symmetry relationship and indirect evidence for magnetoelectric coupling in K3Mn2Cl7.
Fig. 4: Simultaneous thermal manipulation of P and M in K3–xRbxMn2Cl7.

Similar content being viewed by others

Data availability

Data needed to evaluate the conclusions of this paper are present in the Letter and its Supplementary Information. Additional data are available from the corresponding authors upon request.

References

  1. Spaldin, N. A. Multiferroics beyond electric-field control of magnetism. Proc. R. Soc. A 476, 20190542 (2020).

    Article  Google Scholar 

  2. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  3. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  4. Bibes, M. & Barthélémy, A. Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).

    Article  CAS  Google Scholar 

  5. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Article  CAS  Google Scholar 

  6. Chen, X.-Z. et al. Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 29, 1605458 (2017).

    Article  Google Scholar 

  7. Meier, Q. N. et al. Search for the magnetic monopole at a magnetoelectric surface. Phys. Rev. X 9, 011011 (2019).

    CAS  Google Scholar 

  8. Ponet, L. et al. Topologically protected magnetoelectric switching in a multiferroic. Nature 607, 81–85 (2022).

    Article  CAS  Google Scholar 

  9. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  10. Pearson, R. G. The second-order Jahn-Teller effect. J. Mol. Struct. THEOCHEM 103, 25–34 (1983).

    Article  Google Scholar 

  11. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    Article  CAS  Google Scholar 

  12. Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Article  Google Scholar 

  13. Yoshida, S. et al. Hybrid improper ferroelectricity in (Sr,Ca)3Sn2O7 and beyond: universal relationship between ferroelectric transition temperature and tolerance factor in n = 2 Ruddlesden–Popper phases. J. Am. Chem. Soc. 140, 15690–15700 (2018).

    Article  CAS  Google Scholar 

  14. Liu, M. et al. Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. Appl. Phys. Lett. 113, 22902 (2018).

    Article  Google Scholar 

  15. Pitcher, M. J. et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science 347, 420–424 (2015).

    Article  CAS  Google Scholar 

  16. Zhu, T. et al. Directed synthesis of a hybrid improper magnetoelectric multiferroic material. Nat. Commun. 12, 4945 (2021).

    Article  CAS  Google Scholar 

  17. Horowitz, A., Gazit, D. & Makovsky, J. The growth of K3Mn2Cl7, K4MnCl6 and CsMn4Cl9 from non-stoichiometric melts. J. Cryst. Growth 51, 489–492 (1981).

    Article  CAS  Google Scholar 

  18. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  19. Nowadnick, E. A. & Fennie, C. J. Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles. Phys. Rev. B 94, 104105 (2016).

    Article  Google Scholar 

  20. Li, S. & Birol, T. Suppressing the ferroelectric switching barrier in hybrid improper ferroelectrics. npj Comput. Mater. 6, 168 (2020).

    Article  CAS  Google Scholar 

  21. Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article  CAS  Google Scholar 

  22. Scott, J. F. & Blinc, R. Multiferroic magnetoelectric fluorides: why are there so many magnetic ferroelectrics? J. Phys. Condens. Matter 23, 113202 (2011).

    Article  CAS  Google Scholar 

  23. Ye, F. et al. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7. Phys. Rev. B 97, 41112 (2018).

    Article  CAS  Google Scholar 

  24. Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

    Article  CAS  Google Scholar 

  25. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    Article  CAS  Google Scholar 

  26. Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).

    Article  Google Scholar 

  27. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  CAS  Google Scholar 

  28. Alaria, J. et al. Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components. Chem. Sci. 5, 1599–1610 (2014).

    Article  CAS  Google Scholar 

  29. Larson, A. C. & von Dreele, R. B. General Structure Analysis System (GSAS). Report No. LAUR 86-748 (Los Alamos National Laboratory, 2004).

  30. Toby, B. H. & von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549 (2013).

    Article  CAS  Google Scholar 

  31. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 192, 55–69 (1993).

    Article  Google Scholar 

  32. Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. ISODISPLACE: a Web-based tool for exploring structural distortions. J. Appl. Cryst. 39, 607–614 (2006).

    Article  CAS  Google Scholar 

  33. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  34. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  36. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

  37. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    Article  CAS  Google Scholar 

  38. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    Article  CAS  Google Scholar 

  39. Xiang, H. J., Kan, E. J., Wei, S.-H., Whangbo, M.-H. & Gong, X. G. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B 84, 224429 (2011).

    Article  Google Scholar 

  40. Hukushima, K. & Nemoto, K. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn 65, 1604–1608 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Kaminaka from Tohoku University for sample preparation and S. Kawaguchi and S. Kobayashi from SPring-8, JASRI, for assistance in collecting the SXRD data (2020A0822). The NPD experiments were performed at J-Parc BL09 SPICA beamline (2019S10) and JRR-3 HERMES beamline (22602). T.Z. acknowledges the project of university-industrial collaboration (Kyoto University-Sumitomo Chemical), Japan. H.K. and T.Z. acknowledge the JSPS Core-to-Core Program (JPJSCCA202000004), and JSPS Grant-in-Aid for Specially Promoted Research ‘Hydrogen Ion Ceramics’ (JP22H04914). T.Z. and S.K. acknowledge the GIMRT Program of the Institute for Materials Research, Tohoku University (202109-RDKGE-0104). X.-Z.L. and J.M.R. were supported by the National Science Foundation under award no. DMR-2011208. Computational efforts were supported by the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy, Office of Science User Facility, located at Lawrence Berkeley National Laboratory, operated under contract no. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF (ACI-1548562). T.A. was supported by the JSPS KAKENHI (20K14396). K.F. was supported by the JSPS KAKENHI (JP20K20546 and JP22H01775), the Kazuchika Okura Memorial Foundation, the Nippon Sheet Glass Foundation for Materials Science and Engineering and the Mitsubishi Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.Z., X.-Z.L., J.M.R. and H.K. designed the project. T.Z., S.K. and A.Y. synthesized the samples. X.-Z.L. performed the theoretical calculations. T.Z., Y.N., T.S. and C.T. collected the SXRD and NPD data. T.Z. performed the structural analysis, with comments from Y.N., K.F. and X.-Z.L. T.A. and K.O. performed the physical property measurements. K.F., T.K. and T.T. performed the SHG measurements. T.Z., H.T. and H.-B.L. collected and analysed the magnetization data. T.Z., X.-Z.L., J.M.R. and H.K. wrote the manuscript, with comments from other authors.

Corresponding authors

Correspondence to James M. Rondinelli or Hiroshi Kageyama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–12, Figs. 1–33, Tables 1–12 and discussion.

Supplementary Data 1

Optimized computational model 1: A21am space group structure.

Supplementary Data 2

Optimized computational model 2: P42/mnm space group structure.

Supplementary Data 3

Optimized computational model 3: I4/mmm space group structure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Lu, XZ., Aoyama, T. et al. Thermal multiferroics in all-inorganic quasi-two-dimensional halide perovskites. Nat. Mater. 23, 182–188 (2024). https://doi.org/10.1038/s41563-023-01759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01759-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing