Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for d-wave superconductivity of infinite-layer nickelates from low-energy electrodynamics

Abstract

The discovery of superconductivity in infinite-layer nickelates established another category of unconventional superconductors that shares structural and electronic similarities with cuprates. However, key issues of the superconducting pairing symmetry, gap amplitude and superconducting fluctuations are yet to be addressed. Here we utilize static and ultrafast terahertz spectroscopy to address these. We demonstrate that the equilibrium terahertz conductivity and non-equilibrium terahertz responses of an optimally Sr-doped nickelate film (superconducting transition temperature of Tc = 17 K) are in line with the electrodynamics of d-wave superconductivity in the dirty limit. The gap-to-Tc ratio (2Δ/kBTc) is found to be 3.4, indicating that the superconductivity falls in the weak coupling regime. In addition, we observed substantial superconducting fluctuations near Tc that do not extend into the deep normal state as the optimally hole-doped cuprates do. Our results support a d-wave system that closely resembles the electron-doped cuprates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Equilibrium THz conductivity of nickelate superconducting film Nd0.85Sr0.15NiO2.
Fig. 2: Ultrafast THz conductivity change Δσ(tpp, ω) at 3 K induced by optical excitations.
Fig. 3: Ultrafast superconducting kinetics to extract the superconducting gap 2Δ.
Fig. 4: Superconducting fluctuation in the nickelate film.

Similar content being viewed by others

Data availability

The data that support the findings of this work are present in the paper and/or the Supplementary Information. Additional data related to the paper are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  2. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  Google Scholar 

  3. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article  CAS  Google Scholar 

  4. Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    Article  CAS  Google Scholar 

  5. Chen, Z. et al. Electronic structure of superconducting nickelates probed by resonant photoemission spectroscopy. Matter 5, 1806–1815 (2022).

    Article  CAS  Google Scholar 

  6. Lu, H. et al. Magnetic excitations in infinite-layer nickelates. Science 373, 213–216 (2021).

    Article  CAS  Google Scholar 

  7. Harvey, S. P. et al. Evidence for nodal superconductivity in infinite-layer nickelates. Preprint at arXiv https://doi.org/10.48550/arXiv.2201.12971 (2022).

  8. Chow, L. E. et al. Pairing symmetry in infinite-layer nickelate superconductor. Preprint at arXiv https://doi.org/10.48550/arXiv.2201.10038 (2022).

  9. Cervasio, R. et al. Optical properties of superconducting Nd0.8Sr0.2NiO2 nickelate. ACS Appl. Electron. Mater. 5, 4770–4777 (2023).

    Article  CAS  Google Scholar 

  10. Wu, X. et al. Robust \({d}_{{x}^{2}-{y}^{2}}\)-wave superconductivity of infinite-layer nickelates. Phys. Rev. B 101, 060504 (2020).

    Article  CAS  Google Scholar 

  11. Sakakibara, H. et al. Model construction and a possibility of cupratelike pairing in a new d9 nickelate superconductor (Nd,Sr)NiO2. Phys. Rev. Lett. 125, 077003 (2020).

    Article  CAS  Google Scholar 

  12. Kitatani, M. et al. Nickelate superconductors—a renaissance of the one-band Hubbard model. npj Quantum Mater. 5, 59 (2020).

    Article  CAS  Google Scholar 

  13. Held, K. et al. Phase diagram of nickelate superconductors calculated by dynamical vertex approximation. Front. Phys. 9, 810394 (2022).

    Article  Google Scholar 

  14. Kitatani, M. et al. Optimizing superconductivity: from cuprates via nickelates to palladates. Phys. Rev. Lett. 130, 166002 (2023).

    Article  CAS  Google Scholar 

  15. Shen, Z.-X. et al. Anomalously large gap anisotropy in the a–b plane of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 70, 1553–1556 (1993).

    Article  CAS  Google Scholar 

  16. Kirtley, J. R. et al. Symmetry of the order parameter in the high-Tc superconductor YBa2Cu3O7−δ. Nature 373, 225–228 (1995).

    Article  CAS  Google Scholar 

  17. Cheng, B. et al. Anomalous gap-edge dissipation in disordered superconductors on the brink of localization. Phys. Rev. B 93, 180511 (2016).

    Article  Google Scholar 

  18. Yang, X. et al. Ultrafast nonthermal terahertz electrodynamics and possible quantum energy transfer in the Nb3Sn superconductor. Phys. Rev. B 99, 094504 (2019).

    Article  CAS  Google Scholar 

  19. Vaswani, C. et al. Light quantum control of persisting Higgs modes in iron-based superconductors. Nat. Commun. 12, 258 (2021).

    Article  CAS  Google Scholar 

  20. Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2022).

    Article  Google Scholar 

  21. Mahmood, F., He, X., Božović, I. & Armitage, N. P. Locating the missing superconducting electrons in the overdoped cuprates La2−xSrxCuO4. Phys. Rev. Lett. 122, 027003 (2019).

    Article  CAS  Google Scholar 

  22. Won, H. & Maki, K. d-Wave superconductor as a model of high-Tc superconductors. Phys. Rev. B 49, 1397–1402 (1994).

    Article  CAS  Google Scholar 

  23. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221–223 (1999).

    Article  CAS  Google Scholar 

  24. Tajima, S. et al. In-plane optical conductivity of La2−xSrxCuO4: reduced superconducting condensate and residual Drude-like response. Phys. Rev. B 71, 094508 (2005).

    Article  Google Scholar 

  25. Tagay, Z. et al. BCS d-wave behavior in the terahertz electrodynamic response of electron-doped cuprate superconductors. Phys. Rev. B 104, 064501 (2021).

    Article  CAS  Google Scholar 

  26. Yang, X. et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nat. Mater. 17, 586–591 (2018).

    Article  CAS  Google Scholar 

  27. Averitt, R. D. et al. Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−δ. Phys. Rev. B 63, 140502 (2001).

    Article  Google Scholar 

  28. Kaindl, R. A., Carnahan, M. A., Chemla, D. S., Oh, S. & Eckstein, J. N. Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 72, 060510 (2005).

    Article  Google Scholar 

  29. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  CAS  Google Scholar 

  30. Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

    Article  CAS  Google Scholar 

  31. Howell, P. C., Rosch, A. & Hirschfeld, P. J. Relaxation of hot quasiparticles in a d-wave superconductor. Phys. Rev. Lett. 92, 037003 (2004).

    Article  CAS  Google Scholar 

  32. Cortés, R. et al. Momentum-resolved ultrafast electron dynamics in superconducting Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 107, 097002 (2011).

    Article  Google Scholar 

  33. Kabanov, V. V., Demsar, J. & Mihailovic, D. Kinetics of a superconductor excited with a femtosecond optical pulse. Phys. Rev. Lett. 95, 147002 (2005).

    Article  CAS  Google Scholar 

  34. Qazilbash, M. M. et al. Evolution of superconductivity in electron-doped cuprates: magneto-Raman spectroscopy. Phys. Rev. B 72, 214510 (2005).

    Article  Google Scholar 

  35. Dagan, Y., Beck, R. & Greene, R. L. Dirty superconductivity in the electron-doped cuprate Pr2−xCexCuO4−δ: tunneling study. Phys. Rev. Lett. 99, 147004 (2007).

    Article  CAS  Google Scholar 

  36. Shan, L. et al. Weak-coupling Bardeen–Cooper–Schrieffer superconductivity in the electron-doped cuprate superconductors. Phys. Rev. B 77, 014526 (2008).

    Article  Google Scholar 

  37. He, Y. et al. Rapid change of superconductivity and electron–phonon coupling through critical doping in Bi-2212. Science 362, 62–65 (2018).

    Article  CAS  Google Scholar 

  38. Bilbro, L. S. et al. Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy. Nat. Phys. 7, 298–302 (2011).

    Article  CAS  Google Scholar 

  39. Perfetti, L. et al. Ultrafast dynamics of fluctuations in high-temperature superconductors far from equilibrium. Phys. Rev. Lett. 114, 067003 (2015).

    Article  CAS  Google Scholar 

  40. Armitage, N. P., Fournier, P. & Greene, R. L. Progress and perspectives on electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010).

    Article  CAS  Google Scholar 

  41. He, Y. et al. Superconducting fluctuations in overdoped Bi2Sr2CaCu2O8+δ. Phys. Rev. X 11, 031068 (2021).

    CAS  Google Scholar 

  42. Lee-Hone, N. R., Mishra, V., Broun, D. M. & Hirschfeld, P. J. Optical conductivity of over-doped cuprate superconductors: Application to La2−xSrxCuO4. Phys. Rev. B 98, 054506 (2018).

    Article  CAS  Google Scholar 

  43. Li, Z.-X., Kivelson, S. A. & Lee, D.-H. Superconductor-to-metal transition in overdoped cuprates. npj Quantum Mater. 6, 36 (2021).

    Article  Google Scholar 

  44. Luo, L. et al. Quantum coherence tomography of light-controlled superconductivity. Nat. Phys. 19, 201–209 (2023).

    CAS  Google Scholar 

  45. Kim, R. H. J., Park, J.-M., Haeuser, S. J., Luo, L. & Wang, J. A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM). Rev. Sci. Instrum. 94, 043702 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The THz spectroscopy measurement was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering (Ames National Laboratory is operated for the US Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358). B.C. was supported by the Laboratory Directed Research and Development project, Ames National Laboratory (superconductivity). Work at the Stanford Institute for Materials and Energy Sciences (K.L., Z.Y.C., Y.L., B.Y.W., Z.-X.S. and H.Y.H.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-76SF00515 (synthesis and transport measurement) and the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems Initiative (grant no. GBMF9072, synthesis equipment). The authors thank T. P. Devereaux and S. D. Chen for helpful discussions, M. Gonzalez for sample arrangement and S. J. Haeuser for proofreading.

Author information

Authors and Affiliations

Authors

Contributions

B.C., Z.-X.S., H.Y.H. and J.W. initiated the project. B.C. and D.C. performed the measurements with the help of L.L. K.L., Y.L., B.Y.W. and H.Y.H. developed samples and performed transport characterizations. B.C. and J.W. analysed the spectroscopy data with the help of L.L., Z.Y.C., M.M. and I.E.P. The manuscript was written by B.C. and J.W. with input from all authors. J.W. supervised the project.

Corresponding authors

Correspondence to Bing Cheng or Jigang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and discussion.

Source data

Source Data Fig. 1

Equilibrium THz conductivity across Tc.

Source Data Fig. 2

Ultrafast THz conductivity at 3 K.

Source Data Fig. 3

Ultrafast THz data for extracting superconducting gap.

Source Data Fig. 4

Ultrafast THz data to reveal superconducting fluctuation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Cheng, D., Lee, K. et al. Evidence for d-wave superconductivity of infinite-layer nickelates from low-energy electrodynamics. Nat. Mater. (2024). https://doi.org/10.1038/s41563-023-01766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-023-01766-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing