Browse Articles

Filter By:

  • Twisted double bilayer graphene has recently become a popular system to investigate strongly correlated phenomenon where the twist angle is a key degree of freedom. Here, the authors investigate thermopower in twisted double bilayer graphene finding a large enhancement of thermopower and magnetoresistance within a small magnetic field near the charge neutrality point, indicating a compensated semimetallic state.

    • Ayan Ghosh
    • Souvik Chakraborty
    • Anindya Das
    ArticleOpen Access
  • This study tackles the detection of individual molecules by combining a hybrid sensor—a nitrogen vacancy center (NV) and a dangling bond on the diamond surface—with a multi-tone dynamical decoupling sequence. Via numerical simulations the authors prove that the sequence minimizes the impact of decoherence, which allows using the dangling-bond as a signal amplifier.

    • Ainitze Biteri-Uribarren
    • Pol Alsina-Bolívar
    • Jorge Casanova
    ArticleOpen Access
  • Quantum spin liquids, with their fractionalized excitations, are intriguing yet challenging to realise. In this work, the authors demonstrate the feasibility of preparing a trimer spin liquid in a honeycomb array of Rydberg atoms through numerical studies.

    • Milan Kornjača
    • Rhine Samajdar
    • Fangli Liu
    ArticleOpen Access
  • Optical knots are three-dimensional topologies made of singularities in phase or polarization, but the robustness of their topological structure under optical disturbances is still unexplored. The authors experimentally verify the robustness of optical knots to environmental disturbances, indicating them as a viable vector of information.

    • Nazanin Dehghan
    • Alessio D’Errico
    • Ebrahim Karimi
    ArticleOpen Access
  • Using strain to control either magnetization dynamics or electrical properties is a method to create functional materials with energy efficient applications. Here, the authors show how the converse magneto-photostrictive effect can be used to engineer the static and dynamic magnetic properties of FeGa thin films supported on PMN-PZT substrates.

    • Matthieu Liparo
    • Jean-Philippe Jay
    • David T. Dekadjevi
    ArticleOpen Access
  • Bloch oscillations (BOs) are developed to be a powerful tool for the detection of topological properties in lattice systems. Here, the authors propose topological BOs in a three-dimensional higher-order topological insulator model and demonstrate the dynamics of the wave-packet and certain higher-order edge states in this model using electronic circuits.

    • Naiqiao Pan
    • Tian Chen
    • Xiangdong Zhang
    ArticleOpen Access
  • Thermal fluctuations play a fundamental role in determining the exotic phases in low-dimensional quantum materials. Here, utilizing the quantum magnetometry based on nitrogen-vacancy centers in diamond, the thermally-activated escape of bistable magnetic states in a finite 2D ferromagnet is observed with giant tunability by temperature and magnetic field near the critical point.

    • Chen Wang
    • Xi Kong
    • Hualing Zeng
    ArticleOpen Access
  • Flexural oscillations of singly-clamped nanowires can be detected by interferometry for diameters above 50 nm, while below such diameter the detection becomes challenging. The authors detect force derivatives as small as 10-9 N/m at room temperature by measuring hybrid vibration modes originated by coupling a nanowire and a cantilever.

    • Maneesha Sharma
    • Aniruddha Sathyadharma Prasad
    • Thomas Mühl
    ArticleOpen Access
  • Extending the spectral range of on-chip tunable Raman laser is challenging due to the limited Raman frequency shifts and pump tuning bandwidth. The authors combine the dispersion engineering of thin film lithium niobate with cascaded Raman lasing to realize a widely tunable laser with 335-nm spectral extension and sub-milliwatt threshold.

    • Yanjing Zhao
    • Xiaoyue Liu
    • Minhao Pu
    ArticleOpen Access
  • Polarization, or a division into mutually hostile groups, is a common feature of social systems and is studied in terms of the structural balance of semicycles in signed networks. The authors propose a computationally efficient framework for multiscale analysis of structural balance based on semiwalk approximations applicable to any simple signed network.

    • Szymon Talaga
    • Massimo Stella
    • Andreia Sofia Teixeira
    ArticleOpen Access
  • While Majorana excitations are often considered to be a cornerstone for proposed quantum devices, their experimental detection has proven to be a significant challenge. Here, the authors theoretically and experimentally demonstrate that the Kitaev candidate material Ag3LiIr2O6 may support a Majorana-Fermi surface, which could potentially serve as a “smoking gun” for a quantum spin liquid ground state through the lens of specific heat data.

    • Joshuah T. Heath
    • Faranak Bahrami
    • Kevin Bedell
    ArticleOpen Access
  • Higher-order topological phase appears as a pioneering topic, and together with the non-Hermiticity, brings broad attentions recently. The authors explore the interplay between the non-Hermiticity and hierarchical topological states in a non-reciprocal framework and show the flexible reconstruction of non-Hermitian higher-order topological states.

    • Hongfei Wang
    • Biye Xie
    • Wei Ren
    ArticleOpen Access
  • The emergence of large intrinsic anomalous Hall effect (AHE) is tied to the Berry curvature in magnetic topological semimetals, but other alternatives to achieve AHE are still desirable. The authors show that a half-topological semimetal state provides an alternative platform for driving AHE and exhibits a nearly isotropic negative magnetoresistance.

    • Yanglin Zhu
    • Cheng-Yi Huang
    • Zhiqiang Mao
    ArticleOpen Access
  • Driving a quantum material from trivial to non-trivial topological phase can be engineered, for instance, by an applied external field but understanding the physics of the transition can be complex. Here, the authors report a pressure-induced topological phase transition from a semiconductor to a Weyl semimetal phase in 2D Te, and investigate the underlying dynamics using a range of magneto-transport techniques.

    • Chang Niu
    • Zhuocheng Zhang
    • Peide D. Ye
    ArticleOpen Access
  • The authors present a series of correlated insulating states of twisted bilayer graphene that is detected using an atomic force microscope tip. An additional experiment demonstrates the coupling of a mechanical oscillator to a quantum device.

    • Alexina Ollier
    • Marcin Kisiel
    • Ernst Meyer
    ArticleOpen Access
  • The sign of switching currents in supercurrent diodes depends on their flow direction, however effective strategies to control it in single platforms with large efficiency are missing. The authors realise a supercurrent diode in superconducting weak links that is tunable both in amplitude and sign of switching current by an out of-plane magnetic field in a regime without magnetic screening.

    • Daniel Margineda
    • Alessandro Crippa
    • Francesco Giazotto
    ArticleOpen Access
  • Highly-directional hyperbolic surface plasmons are widely exploited in optoelectronic devices, but obtaining the same performance in simpler platforms over metahyperbolic surfaces has technological advantages for integration. The authors predict that RuOCl2 monolayers exhibit low-loss hyperbolic responses across the THz to UV spectral range.

    • Han Gao
    • Xuejin Zhang
    • Mingwen Zhao
    ArticleOpen Access