Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cost–benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption

Abstract

Nanotechnology-based approaches have demonstrated encouraging results for sustainable agriculture production, particularly in the field of fertilizers and pesticide innovation. It is essential to evaluate the economic and environmental benefits of these nanoformulations. Here we estimate the potential revenue gain/loss associated with nanofertilizer and/or nanopesticide use, calculate the greenhouse gas emissions change from the use of nanofertilizer and identify feasible applications and critical issues. The cost–benefit analysis demonstrates that, while current nanoformulations show promise in increasing the net revenue from crops and lowering the environmental impact, further improving the efficiency of nanoformulations is necessary for their widescale adoption. Innovating nanoformulation for targeted delivery, lowering the greenhouse gas emissions associated with nanomaterials and minimizing the content of nanomaterials in the derived nanofertilizers or pesticides can substantially improve both economic and environmental benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Guaranteeing the supply of fruit, vegetables and non-food crops while providing sufficient grains.
Fig. 2: Efficient nanofertilizers can significantly reduce fertilizer dosage for the same corn yield compared with that of conventional fertilizers.
Fig. 3
Fig. 4: GHG emission reduction by using efficient nanofertilizers.
Fig. 5: Costs and benefits of nanopesticides.
Fig. 6: Schematic illustration of how nanopesticides potentially combat pathogens in plants (that is, fruit trees infected by xylem- and/or phylem-resident pathogens).

Similar content being viewed by others

Data availability

The authors declare that the data (including MATLAB analysis) supporting the findings of this study are available as Excel spreadsheets alongside the manuscript and its Supplementary Information (Supplementary Tables 13) and FAO website (https://www.fao.org/faostat/en/#data). Source data are provided with this paper.

References

  1. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  Google Scholar 

  2. Guo, H., White, J. C., Wang, Z. & Xing, B. Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr. Opin. Environ. Sci. Heal. 6, 77–83 (2018).

    Article  Google Scholar 

  3. Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).

    Article  ADS  CAS  Google Scholar 

  4. Zhao, X. et al. Development strategies and prospects of nano-based smart pesticide formulation. J. Agric. Food Chem. 66, 6504–6512 (2018).

    Article  CAS  Google Scholar 

  5. Cao, X. et al. Foliar application with iron oxide nanomaterials stimulate nitrogen fixation, yield, and nutritional quality of soybean. ACS Nano 16, 1170–1181 (2022).

    Article  CAS  Google Scholar 

  6. Hofmann, T. et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 1, 416–425 (2020).

    Article  CAS  Google Scholar 

  7. White, J. C. & Gardea-Torresdey, J. Achieving food security through the very small. Nat. Nanotechnol. 13, 627–629 (2018).

    Article  ADS  CAS  Google Scholar 

  8. Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Gilbertson, L. M. et al. Guiding the design space for nanotechnology to advance sustainable crop production. Nat. Nanotechnol. 15, 801–810 (2020).

    Article  ADS  CAS  Google Scholar 

  10. Kopittke, P. M., Lombi, E., Wang, P., Schjoerring, J. K. & Husted, S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci. Nano 6, 3513–3524 (2019).

    Article  CAS  Google Scholar 

  11. Xu, T. et al. Enhancing agrichemical delivery and plant development with biopolymer-based stimuli responsive core–shell nanostructures. ACS Nano 16, 6034–6048 (2022).

    Article  CAS  Google Scholar 

  12. Ma, X., Sharifan, H., Dou, F. & Sun, W. Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chem. Eng. J. 384, 123802 (2020).

    Article  CAS  Google Scholar 

  13. Liu, Y., Wu, T., White, J. C. & Lin, D. A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nat. Nanotechnol. 16, 197–205 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Li, Y., He, J., Shen, X. & Zhao, K. Effects of foliar application of nano-molybdenum fertilizer on copper metabolism of grazing Chinese Merino sheep (Junken type) on natural grasslands under copper and cadmium stress. Biol. Trace Elem. Res. 200, 2727–2733 (2022).

    Article  CAS  Google Scholar 

  15. Guo, E. L. & Katta, R. Diet and hair loss: effects of nutrient deficiency and supplement use. Dermatol. Pract. Concept. 7, 1–10 (2017).

    Article  Google Scholar 

  16. Srivastava, A. K. & Malhotra, S. K. Nutrient use efficiency in perennial fruit crops—a review. J. Plant Nutr. 40, 1928–1953 (2017).

    Article  CAS  Google Scholar 

  17. Rao, A. S., Biswas, A. K. & Rashmi, I. Phosphorus management issues and strategies. Indian J. Fert 10, 42–55 (2014).

    CAS  Google Scholar 

  18. Chojnacka, K. et al. Carbon footprint of fertilizer technologies. J. Environ. Manage. 231, 962–967 (2019).

    Article  CAS  Google Scholar 

  19. Walling, E. & Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: a review of emission factors and their variability. J. Environ. Manage. 276, 111211 (2020).

    Article  CAS  Google Scholar 

  20. Vignardi, C. P. et al. Conventional and nano-copper pesticides are equally toxic to the estuarine amphipod Leptocheirus plumulosus. Aquat. Toxicol. 224, 105481 (2020).

    Article  CAS  Google Scholar 

  21. Zhang, H. et al. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress. Environ. Sci. Technol. 52, 8016–8026 (2018).

    Article  ADS  CAS  Google Scholar 

  22. Elmer, W., Ma, C. & White, J. Nanoparticles for plant disease management. Curr. Opin. Environ. Sci. Heal. 6, 66–70 (2018).

    Article  Google Scholar 

  23. Su, Y. et al. Delivery, fate, and mobility of silver nanoparticles in citrus trees. ACS Nano 14, 2966–2981 (2020).

    Article  CAS  Google Scholar 

  24. Murugan, K. et al. Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol. Mol. Plant Pathol. 101, 202–213 (2018).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Therapeutic delivery of nanoscale sulfur to suppress disease in tomatoes: in vitro imaging and orthogonal mechanistic investigation. ACS Nano 16, 11204–11217 (2022).

    Article  CAS  Google Scholar 

  26. Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).

    Article  CAS  Google Scholar 

  27. Peréz, C. D. P. et al. Metalloid and metal oxide nanoparticles suppress sudden death syndrome of soybean. J. Agric. Food Chem. 68, 77–87 (2020).

    Article  Google Scholar 

  28. Zhang, Y. et al. Temperature- and pH-responsive star polymers as nanocarriers with potential for in vivo agrochemical delivery. ACS Nano 14, 10954–10965 (2020).

    Article  CAS  Google Scholar 

  29. Deshpande, A. S., Burgert, I. & Paris, O. Hierarchically structured ceramics by high-precision nanoparticle casting of wood. Small 2, 994–998 (2006).

    Article  CAS  Google Scholar 

  30. Carus, M. & Dammer, L. Food or non-food: which agricultural feedstocks are best for industrial uses? Ind. Biotechnol. 9, 171–176 (2013).

    Article  Google Scholar 

  31. Divya Babubhai, B., Rani, B., Gaurangbhai, V. F., Buha, C. & Babubhai, D. Effect of different levels of chemical and nano potassic fertilizer on yield and yield attribute of maize crop (Zea mays L.) cv. Amber. J. Pharmacogn. Phytochem. 8, 58–61 (2019).

    Google Scholar 

  32. Zhao, F. et al. Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays l.). Nanomaterials 11, 2717 (2021).

    Article  CAS  Google Scholar 

  33. Pandorf, M. et al. Graphite nanoparticle addition to fertilizers reduces nitrate leaching in growth of lettuce (Lactuca sativa). Environ. Sci. Nano 7, 127–138 (2020).

    Article  CAS  Google Scholar 

  34. Cai, S. et al. Multi-walled carbon nanotubes improve nitrogen use efficiency and nutritional quality in Brassica campestris. Environ. Sci. Nano 9, 1315–1329 (2022).

    Article  CAS  Google Scholar 

  35. Tarafdar, J. C., Raliya, R., Mahawar, H. & Rathore, I. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric. Res. 3, 257–262 (2014).

    Article  CAS  Google Scholar 

  36. Sabet, H. & Mortazaeinezhad, F. Yield, growth and Fe uptake of cumin (Cuminum cyminum L.) affected by Fe-nano, Fe-chelated and Fe-siderophore fertilization in the calcareous soils. J. Trace Elem. Med. Biol. 50, 154–160 (2018).

    Article  CAS  Google Scholar 

  37. Raliya, R., Saharan, V., Dimkpa, C. & Biswas, P. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J. Agric. Food Chem. 66, 6487–6503 (2018).

    Article  CAS  Google Scholar 

  38. Mohamad Yatim, N., Shaaban, A., Dimin, M. F., Yusof, F. & Abd Razak, J. Application of response surface methodology for optimization of urea grafted multiwalled carbon nanotubes in enhancing nitrogen use efficiency and nitrogen uptake by paddy plants. J. Nanotechnol. 2016, 1250739 (2016).

    Article  Google Scholar 

  39. Dimkpa, C. O. et al. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 11, 1–12 (2020).

    Article  Google Scholar 

  40. Park, S., Choi, K. S., Kim, S., Gwon, Y. & Kim, J. Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials 10, 1–11 (2020).

    Article  CAS  Google Scholar 

  41. Wang, X. et al. Zinc fertilizers modified the formation and properties of iron plaque and arsenic accumulation in rice (Oryza sativa L.) in a life cycle study. Environ. Sci. Technol. 56, 8209–8220 (2022).

    Article  ADS  CAS  Google Scholar 

  42. Sheoran, P., Grewal, S., Kumari, S. & Goel, S. Enhancement of growth and yield, leaching reduction in Triticum aestivum using biogenic synthesized zinc oxide nanofertilizer. Biocatal. Agric. Biotechnol. 32, 110938 (2021).

    Article  Google Scholar 

  43. Yan, X. et al. Rice exposure to silver nanoparticles in a life cycle study: effect of dose responses on grain metabolomic profile, yield, and soil bacteria. Environ. Sci. Nano 9, 2195–2206 (2022).

    Article  CAS  Google Scholar 

  44. Kong, X. et al. Degradation of lipid regulators by the UV/chlorine process: radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes. Water Res. 137, 242–250 (2018).

    Article  CAS  Google Scholar 

  45. Liang, W. et al. pH-responsive on-demand alkaloids release from core-shell ZnO@ZIF-8 nanosphere for synergistic control of bacterial wilt disease. ACS Nano 16, 2762–2773 (2022).

    Article  CAS  Google Scholar 

  46. Wang, D. et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022).

    Article  ADS  CAS  Google Scholar 

  47. Elfeky, A. S. et al. Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr. Polym. 230, 115711 (2020).

    Article  CAS  Google Scholar 

  48. Miri, A., Mahdinejad, N., Ebrahimy, O., Khatami, M. & Sarani, M. Zinc oxide nanoparticles: biosynthesis, characterization, antifungal and cytotoxic activity. Mater. Sci. Eng. C 104, 109981 (2019).

    Article  CAS  Google Scholar 

  49. Malandrakis, A. A., Kavroulakis, N. & Chrysikopoulos, C. V. Copper nanoparticles against benzimidazole-resistant Monilinia fructicola field isolates. Pestic. Biochem. Physiol. 173, 104796 (2021).

    Article  CAS  Google Scholar 

  50. Kumar, S. et al. Nano-based smart pesticide formulations: emerging opportunities for agriculture. J. Control. Release 294, 131–153 (2019).

    Article  CAS  Google Scholar 

  51. Jamdagni, P., Rana, J. S. & Khatri, P. Comparative study of antifungal effect of green and chemically synthesised silver nanoparticles in combination with carbendazim, mancozeb, and thiram. IET Nanobiotechnol. 12, 1102–1107 (2018).

    Article  Google Scholar 

  52. Xue, J. et al. A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep. 4, 1–9 (2014).

    Google Scholar 

  53. Young, M. et al. Multimodal generally recognized as safe ZnO/nanocopper composite: a novel antimicrobial material for the management of citrus phytopathogens. J. Agric. Food Chem. 66, 6604–6608 (2018).

    Article  CAS  Google Scholar 

  54. Agrawal, S., Kumar, V., Kumar, S. & Shahi, S. K. Plant development and crop protection using phytonanotechnology: a new window for sustainable agriculture. Chemosphere 299, 134465 (2022).

    Article  ADS  CAS  Google Scholar 

  55. Jiang, M. et al. Phytonanotechnology applications in modern agriculture. J. Nanobiotechnol. 19, 1–20 (2021).

    Article  Google Scholar 

  56. Usman, M. et al. Nanotechnology in agriculture: current status, challenges and future opportunities. Sci. Total Environ. 721, 137778 (2020).

    Article  ADS  CAS  Google Scholar 

  57. Simonin, M. et al. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep. 6, 1–10 (2016).

    Article  Google Scholar 

  58. Reck, W. R. & Overman, A. R. Estimation of corn response to water and applied nitrogen. J. Plant Nutr. 19, 201–214 (1996).

    Article  CAS  Google Scholar 

  59. Meisinger, J. J., Bandel, V. A., Stanford, G. & Legg, J. O. Nitrogen utilization of corn under minimal tillage and moldboard plow tillage. I. Four-year results using labeled N fertilizer on an atlantic coastal plain soil 1. Agron. J. 77, 602–611 (1985).

    Article  Google Scholar 

  60. Sawyer, J. et al. Concepts and rationale for regional nitrogen rate guidelines for corn concepts and rationale for regional nitrogen rate guidelines for corn. Iowa State Univ. Univ. Ext. 1–28 (2006).

  61. Shapiro, C. A., Ferguson, R. B., Hergert, G. W., Wortmann, C. S. & Walters, D. T. Fertilizer suggestions for corn. Univ. Nebraska Ext. 174, 1–6 (2008).

    Google Scholar 

  62. Motavalli, P. P., Goyne, K. W. & Udawatta, R. P. Environmental impacts of enhanced-efficiency nitrogen fertilizers. Crop Manag. 7, 1–15 (2008).

    Article  Google Scholar 

  63. Guha, T., Gopal, G., Kundu, R. & Mukherjee, A. Nanocomposites for delivering agrochemicals: a comprehensive review. J. Agric. Food Chem. 68, 3691–3702 (2020).

    Article  CAS  Google Scholar 

  64. Simmelsgaard, S. E. & Djurhuus, J. An empirical model for estimating nitrate leaching as affected by crop type and the long-term N fertilizer rate. Soil Use Manag. 14, 37–43 (1998).

    Article  Google Scholar 

  65. Liu, Q. et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Glob. Chang. Biol. 25, 2077–2093 (2019).

    Article  ADS  Google Scholar 

  66. Dimkpa, C. O., Fugice, J., Singh, U. & Lewis, T. D. Development of fertilizers for enhanced nitrogen use efficiency—trends and perspectives. Sci. Total Environ. 731, 139113 (2020).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the US Department of Agriculture (CA-R-PPA-5139-CG).

Author information

Authors and Affiliations

Authors

Contributions

Y.S., A.A.K. and D.J. were responsible for conceptualization, methodology, data collecting and analysis, and writing (original and revised draft). Y.S., P.R., C.R. and D.J. were responsible for project administration and supervision. X.Z., H.M., T.X., H.L., J.E.M. and Y.Z. were responsible for data collecting and analysis, and writing (original draft) and editing (revised draft).

Corresponding authors

Correspondence to Yiming Su or David Jassby.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Food thanks Thilo Hofmann, Dengjun Wang and Jie Zhou for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–3.

Reporting Summary

Supplementary Software

MATLAB code for Figs. 2 and 3.

Source data

Source Data Fig. 1

Food production data from FAOSTAT.

Source Data Fig. 2

MATLAB surface plot raw file.

Source Data Fig. 3

Maximum revenue and its corresponding fertilizer dosage date.

Source Data Fig. 4

GHG emission reduction data.

Source Data Fig. 5

Data on the efficiency and cost of nanopesticides versus non-nano.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhou, X., Meng, H. et al. Cost–benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nat Food 3, 1020–1030 (2022). https://doi.org/10.1038/s43016-022-00647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00647-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene