Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant responses to changing rainfall frequency and intensity

Abstract

Regardless of annual rainfall amount changes, daily rainfall events are becoming more intense but less frequent with anthropogenic warming. Larger rainfall events and longer dry spells have complex and sometimes opposing effects on plant photosynthesis and growth, challenging abilities to understand broader consequences on the carbon cycle. In this Review, we evaluate global plant responses to rainfall regimes characterized by fewer, larger rainfall events across evidence from field experiments, satellites and models. Plant function responses vary between −28% and 29% (5th to 95th percentile) under fewer, larger rainfall events, with the direction of response contingent on climate; productivity increases are more common in dry ecosystems (46% positive; 20% negative), whereas responses are typically negative in wet ecosystems (28% positive; 51% negative). Contrasting responses in dry and wet ecosystems are attributed to nonlinear plant responses to soil moisture driven by several ecohydrological mechanisms. For example, dry ecosystem plants are more sensitive to large rainfall pulses compared with wet ecosystem plants, partly driving dry ecosystem positive responses to fewer, larger rainfall events. Knowledge gaps remain over optimal rainfall frequencies for photosynthesis, the relative dominance of rainfall pulse and dry spell mechanisms and the disproportionate role of extreme rainfall pulses on plant function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fewer, larger rainfall events change hydrological conditions for plants.
Fig. 2: Global trends in daily rainfall event frequency and intensity on vegetated land surfaces.
Fig. 3: Approaches to understand plant response to fewer, larger rainfall events.
Fig. 4: Synthesis of plant responses to fewer, larger rainfall events.
Fig. 5: Mechanistic drivers of plant function under fewer, larger rainfall events.
Fig. 6: Observed and modelled plant response to large rainfall pulses.

Similar content being viewed by others

Data availability

CMIP6 rainfall projections can be obtained from https://cds.climate.copernicus.eu. Observation-based rainfall data sets from MERRA, CPC and GPCC can be obtained from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access, https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html and https://psl.noaa.gov/data/gridded/data.gpcc.html, respectively. FLUXNET observations can be downloaded from https://fluxnet.org.

References

  1. Ruehr, S. et al. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 4, 518–534 (2023).

    Article  CAS  Google Scholar 

  2. Friedlingstein, P. et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  3. Yang, Y. et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 4, 626–641 (2023).

    Article  Google Scholar 

  4. Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    Article  CAS  Google Scholar 

  5. Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 360, 1180–1184 (2018).

    Article  Google Scholar 

  6. Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    Article  CAS  Google Scholar 

  7. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    Article  CAS  Google Scholar 

  8. Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article  CAS  Google Scholar 

  9. Madani, N., Kimball, J. S., Jones, L. A., Parazoo, N. C. & Guan, K. Global Analysis of bioclimatic controls on ecosystem productivity using satellite observations of solar-induced chlorophyll fluorescence. Remote Sens. 9, 530 (2017).

    Article  Google Scholar 

  10. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article  CAS  Google Scholar 

  11. Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–900 (2015).

    Article  Google Scholar 

  12. Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    Article  CAS  Google Scholar 

  13. Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article  CAS  Google Scholar 

  14. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Article  CAS  Google Scholar 

  15. Reyer, C. P. O. et al. A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob. Chang. Biol. 19, 75–89 (2013).

    Article  Google Scholar 

  16. Sala, O. E., Parton, W. J., Joyce, L. A. & Lauenroth, W. K. Primary production of the central grassland region of the United States. Ecology 69, 40–45 (1988).

    Article  Google Scholar 

  17. Biederman, J. A. et al. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Glob. Chang. Biol. 23, 4204–4221 (2017).

    Article  Google Scholar 

  18. Ukkola, A. M. et al. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Glob. Chang. Biol. 27, 4367–4380 (2021).

    Article  CAS  Google Scholar 

  19. Pendergrass, A. G. & Knutti, R. The uneven nature of daily precipitation and its change. Geophys. Res. Lett. 45, 11,980–11,988 (2018).

    Article  Google Scholar 

  20. Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).

    Article  Google Scholar 

  21. Kannenberg, S. A., Bowling, D. R. & Anderegg, W. R. L. Hot moments in ecosystem fluxes: high GPP anomalies exert outsized influence on the carbon cycle and are differentially driven by moisture availability across biomes. Environ. Res. Lett. 15, 054004 (2020).

    Article  CAS  Google Scholar 

  22. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  23. Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 1–9 (2017). This study estimates daily rainfall frequency and intensity trends, both observed and model projected, and compares with trends with annual rainfall totals.

    Article  CAS  Google Scholar 

  24. Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019). An investigation of daily rainfall frequency and intensity-projected trends within CMIP5 experiments.

    Article  Google Scholar 

  25. Holdrege, M. C., Kulmatiski, A., Palmquist, K. A. & Beard, K. H. Precipitation intensification increases shrub dominance in arid, not mesic, ecosyst. Ecosystems 26, 568–584 (2023).

    Article  CAS  Google Scholar 

  26. Thomey, M. L. et al. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob. Chang. Biol. 17, 1505–1515 (2011).

    Article  Google Scholar 

  27. Short Gianotti, D. J., Akbar, R., Feldman, A. F., Salvucci, G. D. & Entekhabi, D. Terrestrial evaporation and moisture drainage in a warmer climate. Geophys. Res. Lett. 47, e2019GL086498 (2020).

    Article  Google Scholar 

  28. McColl, K. A. et al. Global characterization of surface soil moisture drydowns. Geophys. Res. Lett. 44, 3682–3690 (2017).

    Article  Google Scholar 

  29. Zhang, F., Biederman, J. A. & Dannenberg, M. P. Five decades of observed daily precipitation reveal longer and more variable drought events across much of the Western United States. Geophys. Res. Lett. 48, e2020GL092293 (2021).

    Article  Google Scholar 

  30. Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Land–atmosphere drivers of landscape-scale plant water content loss. Geophys. Res. Lett. 47, e2020GL090331 (2020).

    Article  Google Scholar 

  31. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).

    Article  Google Scholar 

  32. Ross, I. et al. How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in seasonally water-limited Northern Hemisphere shrublands and forests? Biogeosciences 9, 1007–1024 (2012).

    Article  Google Scholar 

  33. Liu, J. et al. Impact of temporal precipitation variability on ecosystem productivity. Wiley Interdiscip. Rev. Water 7, e1481 (2020).

    Article  Google Scholar 

  34. Knapp, A. K. et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298, 2202–2205 (2002). One of the first field experiments evaluating effects of fewer, larger rainfall events on soil and plants at a Kansas site where many rainfall manipulation experiments have been performed.

    Article  CAS  Google Scholar 

  35. Liu, W. J. et al. Repackaging precipitation into fewer, larger storms reduces ecosystem exchanges of CO2 and H2O in a semiarid steppe. Agric. For. Meteorol. 247, 356–364 (2017).

    Article  Google Scholar 

  36. Fay, P. A., Kaufman, D. M., Nippert, J. B., Carlisle, J. D. & Harper, C. W. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Glob. Chang. Biol. 14, 1600–1608 (2008).

    Article  Google Scholar 

  37. Heisler-White, J. L., Blair, J. M., Kelly, E. F., Harmoney, K. & Knapp, A. K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Chang. Biol. 15, 2894–2904 (2009).

    Article  Google Scholar 

  38. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article  Google Scholar 

  39. Baudena, M., Boni, G., Ferraris, L., von Hardenberg, J. & Provenzale, A. Vegetation response to rainfall intermittency in drylands: results from a simple ecohydrological box model. Adv. Water Resour. 30, 1320–1328 (2007).

    Article  Google Scholar 

  40. Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 3, 811–815 (2013).

    Article  Google Scholar 

  41. Su, J., Zhang, Y. & Xu, F. Divergent responses of grassland productivity and plant diversity to intra- annual precipitation variability across climate regions: a global synthesis. J. Ecol. 111, 1–14 (2023). Synthesized plant responses to changing rainfall frequency and intensity from field experiments across the globe.

    Article  Google Scholar 

  42. Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58, 811–821 (2008). Uses a soil water bucket model to provide a framework for why plants in dry and wet ecosystems would have opposing responses to fewer, larger wet days.

    Article  Google Scholar 

  43. Wang, L. et al. Dryland productivity under a changing climate. Nat. Clim. Chang. 12, 981–994 (2022).

    Article  Google Scholar 

  44. Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    Article  Google Scholar 

  45. Huxman, T. E. et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141, 254–268 (2004).

    Article  Google Scholar 

  46. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  47. Lee, J.-Y. et al. in Climate Change 2021 — The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 4 (eds Masson-Delmotte, V. et al.) 553–672 (Cambridge Univ. Press, 2023).

  48. Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the ‘wet-get-wetter, dry-get-drier’ scaling does not hold over land. J. Clim. 28, 8078–8093 (2015).

    Article  Google Scholar 

  49. Zaitchik, B. F., Rodell, M., Biasutti, M. & Seneviratne, S. I. Wetting and drying trends under climate change. Nat. Water 1, 502–513 (2023).

    Article  Google Scholar 

  50. Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, 1–22 (2006).

    Article  Google Scholar 

  51. Ziese, M. et al. GPCC full data daily version 2022 at 1.0°: daily land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC https://doi.org/10.5676/DWD_GPCC/FD_D_V2022_100 (2022).

  52. Reichle, R. H. et al. Land surface precipitation in MERRA-2. J. Clim. 30, 1643–1664 (2017).

    Article  Google Scholar 

  53. Chen, M. et al. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 113, 1–13 (2008).

    Google Scholar 

  54. Pendergrass, A. G. What precipitation is extreme? Science 360, 1072–1073 (2018).

    Article  CAS  Google Scholar 

  55. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  56. Pendergrass, A. G. & Gerber, E. P. The rain is askew: two idealized models relating vertical velocity and precipitation distributions in a warming world. J. Clim. 29, 6445–6462 (2016).

    Article  Google Scholar 

  57. Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 7, 423–427 (2017).

    Article  Google Scholar 

  58. Lu, J., Vecchi, G. A. & Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, 2–6 (2007).

    Google Scholar 

  59. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  60. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 6, 508–513 (2016).

    Article  Google Scholar 

  61. Donat, M. G., Angélil, O. & Ukkola, A. M. Intensification of precipitation extremes in the world’s humid and water-limited regions. Environ. Res. Lett. 14, 065003 (2019).

    Article  CAS  Google Scholar 

  62. Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Chang. 3, 1033–1038 (2013).

    Article  Google Scholar 

  63. Miranda, J., Padilla, F. M., Lázaro, R. & Pugnaire, F. I. Do changes in rainfall patterns affect semiarid annual plant communities? J. Veg. Sci. 20, 269–276 (2009).

    Article  Google Scholar 

  64. Zhang, J. et al. Moderately prolonged dry intervals between precipitation events promote production in Leymus chinensis in a semi-arid grassland of Northeast China. BMC Plant. Biol. 21, 1–11 (2021).

    Google Scholar 

  65. Grant, K., Kreyling, J., Beierkuhnlein, C. & Jentsch, A. Importance of seasonality for the response of a mesic temperate grassland to increased precipitation variability and warming. Ecosystems 20, 1454–1467 (2017).

    Article  Google Scholar 

  66. Ma, Y., Zhang, T. & Liu, X. Effect of intensity of small rainfall simulation in spring on annuals in Horqin Sandy Land, China. Environ. Earth Sci. 74, 727–735 (2015).

    Article  Google Scholar 

  67. Padilla, F. M. et al. Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community. Oecologia 191, 177–190 (2019).

    Article  Google Scholar 

  68. Schuster, M. J., Smith, N. G. & Dukes, J. S. Responses of aboveground C and N pools to rainfall variability and nitrogen deposition are mediated by seasonal precipitation and plant community dynamics. Biogeochemistry 129, 389–400 (2016).

    Article  CAS  Google Scholar 

  69. Arca, V., Power, S. A., Delgado-Baquerizo, M., Pendall, E. & Ochoa-Hueso, R. Seasonal effects of altered precipitation regimes on ecosystem-level CO2 fluxes and their drivers in a grassland from Eastern Australia. Plant Soil 460, 435–451 (2021).

    Article  CAS  Google Scholar 

  70. Zhang, F. et al. Precipitation temporal repackaging into fewer, larger storms delayed seasonal timing of peak photosynthesis in a semi‐arid grassland. Funct. Ecol. 36, 646–658 (2021).

    Article  Google Scholar 

  71. Holdrege, M. C., Beard, K. H. & Kulmatiski, A. Woody plant growth increases with precipitation intensity in a cold semiarid system. Ecology 102, 1–11 (2021).

    Article  Google Scholar 

  72. Fay, P. A. et al. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8, 3053–3068 (2011).

    Article  CAS  Google Scholar 

  73. Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Chang. 3, 833–837 (2013).

    Article  CAS  Google Scholar 

  74. Berry, R. S. & Kulmatiski, A. A savanna response to precipitation intensity. PLoS ONE 12, 1–18 (2017).

    Article  CAS  Google Scholar 

  75. Williams, K. J., Wilsey, B. J., McNaughton, S. J. & Banyikwa, F. F. Temporally variable rainfall does not limit yields of Serengeti grasses. Oikos 81, 463 (1998).

    Article  Google Scholar 

  76. Xie, Y., Li, Y., Xie, T., Meng, R. & Zhao, Z. Impact of artificially simulated precipitation pattern change on the growth and morphology of Reaumuria soongarica seedlings in Hexi Corridor of China. Sustain 12, 2439 (2020).

    Article  CAS  Google Scholar 

  77. Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).

    Article  CAS  Google Scholar 

  78. Zhao, H., Jia, G., Xu, X., Zhang, A. & Wang, H. Divergent effects of intensified precipitation on primary production in global drylands. Sci. Total Environ. 892, 164736 (2023).

    Article  CAS  Google Scholar 

  79. Case, M. F. & Staver, A. C. Soil texture mediates tree responses to rainfall intensity in African savannas. N. Phytol. 219, 1363–1372 (2018).

    Article  Google Scholar 

  80. Ritter, F., Berkelhammer, M. & Garcia-Eidell, C. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun. Earth Environ. 1, 34 (2020).

    Article  Google Scholar 

  81. Fang, J. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32, 1–5 (2005).

    Article  CAS  Google Scholar 

  82. Xu, X. et al. Tree cover shows strong sensitivity to precipitation variability across the global tropics. Glob. Ecol. Biogeogr. 27, 450–460 (2018).

    Article  Google Scholar 

  83. Zhang, Y. et al. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes. J. Geophys. Res. Biogeosci. 118, 148–157 (2013).

    Article  Google Scholar 

  84. Zhang, W., Brandt, M., Tong, X., Tian, Q. & Fensholt, R. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences 15, 319–330 (2018).

    Article  Google Scholar 

  85. Guo, Q. et al. Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agric. For. Meteorol. 214–215, 169–177 (2015).

    Article  Google Scholar 

  86. D’Onofrio, D., Sweeney, L., von Hardenberg, J. & Baudena, M. Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes. Sci. Rep. 9, 1–10 (2019).

    Article  Google Scholar 

  87. Porporato, A., Daly, E. & Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Nat. 164, 625–632 (2004). This study uses a minimalist process model to predict and attribute plant responses to fewer, larger rainfall events at the Knapp et al. (2002) Kansas field experiment.

    Article  Google Scholar 

  88. Zhang, D. H., Li, X. R., Zhang, F., Zhang, Z. S. & Chen, Y. L. Effects of rainfall intensity and intermittency on woody vegetation cover and deep soil moisture in dryland ecosystems. J. Hydrol. 543, 270–282 (2016).

    Article  Google Scholar 

  89. Nordbotten, J. M., Rodriguez-Iturbe, I. & Celia, M. A. Stochastic coupling of rainfall and biomass dynamics. Water Resour. Res. 43, 1–7 (2007).

    Article  Google Scholar 

  90. Xu, X., Medvigy, D. & Rodriguez-Iturbe, I. Relation between rainfall intensity and savanna tree abundance explained by water use strategies. Proc. Natl Acad. Sci. USA 112, 12992–12996 (2015).

    Article  CAS  Google Scholar 

  91. Guan, K. et al. Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa. Biogeosciences 11, 6939–6954 (2014).

    Article  Google Scholar 

  92. Medvigy, D., Wofsy, S. C., Munger, J. W. & Moorcroft, P. R. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc. Natl Acad. Sci. USA 107, 8275–8280 (2010).

    Article  CAS  Google Scholar 

  93. Peng, S. et al. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis. Agric. For. Meteorol. 178–179, 46–55 (2013).

    Article  Google Scholar 

  94. Fay, P. A. et al. Altered rainfall patterns, gas exchange, and growth in grasses and forbs. Int. J. Plant Sci. 163, 549–557 (2002).

    Article  Google Scholar 

  95. Griffin-Nolan, R. J., Slette, I. J. & Knapp, A. K. Deconstructing precipitation variability: rainfall event size and timing uniquely alter ecosystem dynamics. J. Ecol. 109, 3356–3369 (2021).

    Article  CAS  Google Scholar 

  96. Rodríguez-Iturbe, I., D’Odorico, P., Porporato, A. & Ridolfi, L. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour. 35, 3709–3722 (1999).

    Article  Google Scholar 

  97. Laio, F., Porporato, A., Fernandez-Illescas, C. P. & Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress II. Probabilistic soil moisture dynamics. Adv. Water Resour. 24, 707–723 (2001).

    Article  Google Scholar 

  98. Daly, E., Porporato, A. & Rodriguez-Iturbe, I. Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part II: stochastic analysis and ecohydrological significance. J. Hydrometeorol. 5, 559–566 (2004).

    Article  Google Scholar 

  99. Daly, E., Porporato, A. & Rodríguez-Iturbe, I. Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part I: upscaling from hourly to daily level. J. Hydrometeorol. 5, 546–558 (2004).

    Article  Google Scholar 

  100. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  CAS  Google Scholar 

  101. Porporato, A., Laio, F., Ridolfi, L. & Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress III. Vegetation water stress. Adv. Water Resour. 24, 725–744 (2001).

    Article  Google Scholar 

  102. Guan, K. et al. Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length. Environ. Res. Lett. 13, 025013 (2018).

    Article  Google Scholar 

  103. Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol. 184, 65–74 (2006).

    Article  Google Scholar 

  104. Noy-Meir, I. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4, 25–52 (1973). This paper poses thepulse reserve paradigmto describe dryland plant responses to individual rainfall events.

    Article  Google Scholar 

  105. Felton, A. J., Slette, I. J., Smith, M. D. & Knapp, A. K. Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. Glob. Chang. Biol. 26, 658–668 (2020).

    Article  Google Scholar 

  106. Fay, P. A., Carlisle, J. D., Knapp, A. K., Blair, J. M. & Collins, S. L. Productivity responses to altered rainfall patterns in a C 4-dominated grassland. Oecologia 137, 245–251 (2003).

    Article  Google Scholar 

  107. Post, A. K. & Knapp, A. K. How big is big enough? Surprising responses of a semiarid grassland to increasing deluge size. Glob. Chang. Biol. 27, 1157–1169 (2021).

    Article  CAS  Google Scholar 

  108. Robinson, T. M. P. & Gross, K. L. The impact of altered precipitation variability on annual weed species. Am. J. Bot. 97, 1625–1629 (2010).

    Article  Google Scholar 

  109. Wilcox, K. R., von Fischer, J. C., Muscha, J. M., Petersen, M. K. & Knapp, A. K. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Glob. Chang. Biol. 21, 335–344 (2015).

    Article  Google Scholar 

  110. Slette, I. J., Blair, J. M., Fay, P. A., Smith, M. D. & Knapp, A. K. Effects of compounded precipitation pattern intensification and drought occur belowground in a mesic grassland. Ecosystems 25, 1265–1278 (2021).

    Article  Google Scholar 

  111. Zeppel, M. J. B., Wilks, J. V. & Lewis, J. D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11, 3083–3093 (2014).

    Article  Google Scholar 

  112. Huang, H., Calabrese, S. & Rodriguez-Iturbe, I. J. Variability of ecosystem carbon source from microbial respiration is controlled by rainfall dynamics. Proc. Natl Acad. Sci. USA 118, e2115283118 (2021).

    Article  CAS  Google Scholar 

  113. Berg, A., Sultan, B. & De Noblet-Ducoudré, N. What are the dominant features of rainfall leading to realistic large-scale crop yield simulations in West Africa? Geophys. Res. Lett. 37, 1–6 (2010).

    Article  Google Scholar 

  114. Harper, C. W., Blair, J. M., Fay, P. A., Knapp, A. K. & Carlisle, J. D. Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Glob. Chang. Biol. 11, 322–334 (2005).

    Article  Google Scholar 

  115. Felton, A. J. et al. Climate disequilibrium dominates uncertainty in long-term projections of primary productivity. Ecol. Lett. 25, 2688–2698 (2022).

    Article  Google Scholar 

  116. Knapp, A. K. et al. Past, present, and future roles of long-term experiments in the LTER network. Bioscience 62, 377–389 (2012).

    Article  Google Scholar 

  117. Beier, C. et al. Precipitation manipulation experiments — challenges and recommendations for the future. Ecol. Lett. 15, 899–911 (2012).

    Article  Google Scholar 

  118. Adler, P. B., White, E. P. & Cortez, M. H. Matching the forecast horizon with the relevant spatial and temporal processes and data sources. Ecography 43, 1729–1739 (2020).

    Article  Google Scholar 

  119. Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).

    Article  Google Scholar 

  120. Feng, X., Dawson, T. E., Ackerly, D. D., Santiago, L. S. & Thompson, S. E. Reconciling seasonal hydraulic risk and plant water use through probabilistic soil–plant dynamics. Glob. Chang. Biol. 23, 3758–3769 (2017).

    Article  Google Scholar 

  121. Throop, H. L., Reichmann, L. G., Sala, O. E. & Archer, S. R. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert Grassland. Oecologia 169, 373–383 (2012).

    Article  Google Scholar 

  122. Javadian, M. et al. Thermography captures the differential sensitivity of dryland functional types to changes in rainfall event timing and magnitude. N. Phytol. 240, 114–126 (2023).

    Article  CAS  Google Scholar 

  123. Reynaert, S. et al. Risk of short-term biodiversity loss under more persistent precipitation regimes. Glob. Chang. Biol. 27, 1614–1626 (2021).

    Article  Google Scholar 

  124. Jackson, R. B., Banner, J. L., Jobbagy, E. G., Pockman, W. T. & Wall, D. H. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623–626 (2002).

    Article  CAS  Google Scholar 

  125. Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015).

    Article  CAS  Google Scholar 

  126. Schreiner-McGraw, A. P. et al. Woody plant encroachment has a larger impact than climate change on dryland water budgets. Sci. Rep. 10, 1–9 (2020).

    Article  Google Scholar 

  127. Hao, Y. et al. Climate-induced abrupt shifts in structural states trigger delayed transitions in functional states. Ecol. Indic. 115, 106468 (2020).

    Article  Google Scholar 

  128. Harrison, S. P., Gornish, E. S. & Copeland, S. Climate-driven diversity loss in a grassland community. Proc. Natl Acad. Sci. USA 112, 8672–8677 (2015).

    Article  CAS  Google Scholar 

  129. Barbeta, A., Ogaya, R. & Peñuelas, J. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest. Glob. Chang. Biol. 19, 3133–3144 (2013).

    Article  Google Scholar 

  130. Jones, S. K., Collins, S. L., Blair, J. M., Smith, M. D. & Knapp, A. K. Altered rainfall patterns increase forb abundance and richness in native tallgrass prairie. Sci. Rep. 6, 1–10 (2016).

    Article  Google Scholar 

  131. Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498 (2021).

    Article  Google Scholar 

  132. Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Chang. Biol. 23, 3742–3757 (2017).

    Article  Google Scholar 

  133. Collins, S. L. et al. Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Funct. Ecol. 26, 1450–1459 (2012).

    Article  Google Scholar 

  134. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article  CAS  Google Scholar 

  135. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Article  CAS  Google Scholar 

  136. Zhang, Y. et al. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat. Commun. 13, 4875 (2022).

    Article  CAS  Google Scholar 

  137. Roby, M. C., Scott, R. L. & Moore, D. J. P. High vapor pressure deficit decreases the productivity and water use efficiency of rain-induced pulses in semiarid ecosystems. J. Geophys. Res. Biogeosci. 125, 1–14 (2020).

    Article  Google Scholar 

  138. Katul, G. G., Oren, R., Manzoni, S., Higgins, C. & Parlange, M. B. Evapotranspiration: a process driving mass transport and energy exchange in the soil–plant–atmosphere–climate system. Rev. Geophys. 50, 1–25 (2012).

    Article  Google Scholar 

  139. Reynolds, J. F., Kemp, P. R., Ogle, K. & Fernández, R. J. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141, 194–210 (2004).

    Article  Google Scholar 

  140. Fensham, R. J., Butler, D. W. & Foley, J. How does clay constrain woody biomass in drylands? Glob. Ecol. Biogeogr. 24, 950–958 (2015).

    Article  Google Scholar 

  141. Wei, L. et al. Experimental investigation of relationship between infiltration rate and soil moisture under rainfall conditions. Water 14, 1–11 (2022).

    Article  Google Scholar 

  142. Penna, D., Tromp-Van Meerveld, H. J., Gobbi, A., Borga, M. & Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 15, 689–702 (2011).

    Article  Google Scholar 

  143. Western, A. W. & Grayson, R. B. The Terrawarra data set: soil moisture patterns, soil characteristics, and hydrological flux measurements. Water Resour. Res. 34, 2765–2768 (1998).

    Article  Google Scholar 

  144. Vereecken, H. et al. Soil hydrology in the Earth system. Nat. Rev. Earth Environ. 3, 573–587 (2022).

    Article  Google Scholar 

  145. Lian, X., Zhao, W. & Gentine, P. Recent global decline in rainfall interception loss due to altered rainfall regimes. Nat. Commun. 13, 7642 (2022).

    Article  CAS  Google Scholar 

  146. Thomey, M. L., Collins, S. L., Friggens, M. T., Brown, R. F. & Pockman, W. T. Effects of monsoon precipitation variability on the physiological response of two dominant C 4 grasses across a semiarid ecotone. Oecologia 176, 751–762 (2014).

    Article  Google Scholar 

  147. Lauenroth, W. K. & Bradford, J. B. Ecohydrology of dry regions of the United States: water balance consequences of small precipitation events. Ecohydrology 5, 46–53 (2012).

    Article  Google Scholar 

  148. Demaria, E. M. C., Hazenberg, P. & Meles, M. B. Intensification of the North American Monsoon rainfall as observed from a long‐term high‐density gauge network geophysical research letters. Geophys. Res. Lett. 46, 6839–6847 (2019).

    Article  Google Scholar 

  149. Pockman, W. T. & Small, E. E. The influence of spatial patterns of soil moisture on the grass and shrub responses to a summer rainstorm in a Chihuahuan desert ecotone. Ecosystems 13, 511–525 (2010).

    Article  Google Scholar 

  150. McDonald, A. K., Kinucan, R. J. & Loomis, L. E. Ecohydrological interactions within banded vegetation in the northeastern Chihuahuan Desert, USA. Ecohydrology 2, 66–71 (2009).

  151. Schreiner-Mcgraw, A. P., Ajami, H. & Vivoni, E. R. Extreme weather events and transmission losses in arid streams. Environ. Res. Lett. 14, 084002 (2019).

    CAS  Google Scholar 

  152. Scott, R. L. & Biederman, J. A. Critical zone water balance over 13 years in a semiarid savanna. Water Resour. Res. 55, 574–588 (2019).

    Article  Google Scholar 

  153. Nippert, J. B. & Holdo, R. M. Challenging the maximum rooting depth paradigm in grasslands and savannas. Funct. Ecol. 29, 739–745 (2015).

    Article  Google Scholar 

  154. Potts, D. L. et al. Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. N. Phytol. 170, 849–860 (2006).

    Article  CAS  Google Scholar 

  155. He, Z., Zhao, W., Liu, H. & Chang, X. The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: a case study in northwestern China’s Qilian Mountains. J. Hydrol. 420–421, 183–190 (2012).

    Article  Google Scholar 

  156. Tumber-Dávila, S. J., Schenk, H. J., Du, E. & Jackson, R. B. Plant sizes and shapes above and belowground and their interactions with climate. N. Phytol. 235, 1032–1056 (2022).

    Article  Google Scholar 

  157. Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).

    Article  CAS  Google Scholar 

  158. Raz-Yaseef, N., Yakir, D., Rotenberg, E., Schiller, G. & Cohen, S. Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology 3, 143–154 (2010).

    Article  Google Scholar 

  159. Fravolini, A. et al. Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size. Oecologia 144, 618–627 (2005).

    Article  Google Scholar 

  160. Zhu, X. et al. Soil coarsening alleviates precipitation constraint on vegetation growth in global drylands. Environ. Res. Lett. 17, 11 (2022).

    Article  Google Scholar 

  161. Ogle, K., Wolpert, R. L. & Reynolds, J. F. Reconstructing plant root area and water uptake profiles. Ecology 85, 1967–1978 (2004).

    Article  Google Scholar 

  162. Schwinning, S., Sala, O. E., Loik, M. E. & Ehleringer, J. R. Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141, 191–193 (2004).

    Article  Google Scholar 

  163. Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).

    Article  CAS  Google Scholar 

  164. Bassiouni, M., Good, S. P., Still, C. J. & Higgins, C. W. Plant water uptake thresholds inferred from satellite soil moisture. Geophys. Res. Lett. 47, e2020GL087077 (2020).

    Article  Google Scholar 

  165. Jonard, F., Feldman, A. F., Gianotti, D. J. S. & Entekhabi, D. Observed water- and light-limitation across global ecosystems. Biogeosciences 19, 5575–5590 (2022).

    Article  CAS  Google Scholar 

  166. Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D. & Entekhabi, D. Satellite and station observations demonstrate water availability’s effect on continental-scale evaporative and photosynthetic land surface dynamics. Water Resour. Res. 55, 540–554 (2019).

    Article  Google Scholar 

  167. Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Satellite-based assessment of land surface energy partitioning–soil moisture relationships and effects of confounding variables. Water Resour. Res. 55, 10657–10677 (2019).

    Article  Google Scholar 

  168. Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).

    Article  Google Scholar 

  169. Famiglietti, C. A., Michalak, A. M. & Konings, A. G. Extreme wet events as important as extreme dry events in controlling spatial patterns of vegetation greenness anomalies. Environ. Res. Lett. 16, 074014 (2021).

    Article  Google Scholar 

  170. Novick, K. A. et al. Confronting the water potential information gap. Nat. Geosci. 15, 158–164 (2022).

    Article  CAS  Google Scholar 

  171. Feldman, A. F., Short Gianotti, D. J., Konings, A. G., Gentine, P. & Entekhabi, D. Patterns of plant rehydration and growth following pulses of soil moisture availability. Biogeosciences 18, 831–847 (2021).

    Article  CAS  Google Scholar 

  172. Post, A. K. & Knapp, A. K. Plant growth and aboveground production respond differently to late-season deluges in a semi-arid grassland. Oecologia 191, 673–683 (2019).

    Article  Google Scholar 

  173. Huxman, T. E. et al. Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141, 295–305 (2004).

    Article  Google Scholar 

  174. Raz-Yaseef, N., Yakir, D., Schiller, G. & Cohen, S. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns. Agric. For. Meteorol. 157, 77–85 (2012).

    Article  Google Scholar 

  175. Klein, T., Cohen, S. & Yakir, D. Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol. 31, 637–648 (2011).

    Article  Google Scholar 

  176. Feldman, A. F., Chulakadabba, A., Short Gianotti, D. J. & Entekhabi, D. Landscape-scale plant water content and carbon flux behavior following moisture pulses: from dryland to mesic environments. Water Resour. Res. 57, e2020WR027592 (2021).

    Article  Google Scholar 

  177. Potts, D. L., Barron-Gafford, G. A. & Scott, R. L. Ecosystem hydrologic and metabolic flashiness are shaped by plant community traits and precipitation. Agric. For. Meteorol. 279, 107674 (2019).

    Article  Google Scholar 

  178. Guo, Q. et al. Responses of gross primary productivity to different sizes of precipitation events in a temperate grassland ecosystem in Inner Mongolia, China. J. Arid Land 8, 36–46 (2016).

    Article  Google Scholar 

  179. Williams, C. A., Hanan, N., Scholes, R. J. & Kutsch, W. Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna. Oecologia 161, 469–480 (2009).

    Article  Google Scholar 

  180. Parton, W., Morgan, J., Smith, D. & Grosso, S. D. E. L. Impact of precipitation dynamics on net ecosystem productivity. Glob. Chang. Biol. 18, 915–927 (2012).

    Article  Google Scholar 

  181. Scott, R. L., Biederman, J. A., Hamerlynck, E. P. & Barron-Gafford, G. A. The carbon balance pivot point of southwestern U.S. semiarid ecosystems: insights from the 21st century drought. J. Geophys. Res. Biogeosci. 120, 2612–2624 (2015).

    Article  CAS  Google Scholar 

  182. Pastorello, G., Trotta, C. & Canfora, E. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article  Google Scholar 

  183. Post, A. K. & Knapp, A. K. The importance of extreme rainfall events and their timing in a semi-arid grassland. J. Ecol. 108, 2431–2443 (2020).

    Article  Google Scholar 

  184. Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).

    Article  Google Scholar 

  185. Feldman, A. F. et al. Moisture pulse-reserve in the soil-plant continuum observed across biomes. Nat. Plants 4, 1026–1033 (2018). An evaluation of plant sensitivity to individual rainfall pulses and their soil moisture thresholds using satellite measurements across the tropics.

    Article  Google Scholar 

  186. Harris, B. L. et al. Satellite-observed vegetation responses to intraseasonal precipitation variability. Geophys. Res. Lett. 49, 1–11 (2022).

    Article  Google Scholar 

  187. Roman, D. T. et al. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179, 641–654 (2015).

    Article  CAS  Google Scholar 

  188. Ignace, D. D., Huxman, T. E., Weltzin, J. F. & Williams, D. G. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert. Oecologia 152, 401–413 (2007).

    Article  Google Scholar 

  189. Craine, J. M. et al. Timing of climate variability and grassland productivity. Proc. Natl Acad. Sci. USA 109, 3401–3405 (2012).

    Article  CAS  Google Scholar 

  190. Hao, Y. B. et al. Aboveground net primary productivity and carbon balance remain stable under extreme precipitation events in a semiarid steppe ecosystem. Agric. For. Meteorol. 240–241, 1–9 (2017).

    Article  Google Scholar 

  191. Brown, R. F., Sala, O. E., Sinsabaugh, R. L. & Collins, S. L. Temporal effects of monsoon rainfall pulses on plant available nitrogen in a Chihuahuan desert grassland. J. Geophys. Res. Biogeosci. 127, e2022JG006938 (2022).

    Article  CAS  Google Scholar 

  192. Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 9, 161–185 (2003).

    Article  Google Scholar 

  193. Zhang, F. et al. Using high frequency digital repeat photography to quantify the sensitivity of a semi-arid grassland ecosystem to the temporal repackaging of precipitation. Agric. For. Meteorol. 338, 109539 (2023).

    Article  Google Scholar 

  194. Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Chang. Biol. 26, 3336–3355 (2020).

    Article  Google Scholar 

  195. McColl, K. A. et al. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 10, 100–104 (2017).

    Article  CAS  Google Scholar 

  196. Cherwin, K. & Knapp, A. Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 169, 845–852 (2012).

    Article  Google Scholar 

  197. Cochard, H., Bréda, N. & Granier, A. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann. For. Sci. 53, 197–206 (1996).

    Article  Google Scholar 

  198. Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Chang. Biol. 17, 2134–2144 (2011).

    Article  Google Scholar 

  199. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article  CAS  Google Scholar 

  200. North, G. B. & Nobel, P. S. Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of agave deserti (Agavaceae). Am. J. Bot. 78, 906 (1991).

    Article  Google Scholar 

  201. McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).

    Article  CAS  Google Scholar 

  202. Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    Article  CAS  Google Scholar 

  203. Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Chang. Biol. 25, 269–276 (2019).

    Article  Google Scholar 

  204. Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Chang. Biol. 23, 891–905 (2017).

    Article  Google Scholar 

  205. Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem. Cycles 17, 1006 (2003).

    Article  Google Scholar 

  206. Yu, K. & D’Odorico, P. Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots. Adv. Water Resour. 66, 70–80 (2014).

    Article  Google Scholar 

  207. Larsen, L., Thomas, C., Eppinga, M. & Coulthard, T. Exploratory modeling: extracting causality from complexity. Eos Trans. Am. Geophys. Union 95, 285–286 (2014).

    Article  Google Scholar 

  208. Weltzin, J. F. et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53, 941 (2003).

    Article  Google Scholar 

  209. Kröel-Dulay, G. et al. Field experiments underestimate aboveground biomass response to drought. Nat. Ecol. Evol. 6, 540–545 (2022).

    Article  Google Scholar 

  210. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).

    Article  CAS  Google Scholar 

  211. Lundholm, J. T. & Larson, D. W. Experimental separation of resource quantity from temporal variability: seedling responses to water pulses. Oecologia 141, 346–352 (2004).

    Article  Google Scholar 

  212. Ogle, K. & Reynolds, J. F. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141, 282–294 (2004).

    Article  Google Scholar 

  213. Orth, R. When the land surface shifts gears. AGU Adv. 2, 2019–2022 (2021).

    Article  Google Scholar 

  214. Hsu, J. S., Powell, J. & Adler, P. B. Sensitivity of mean annual primary production to precipitation. Glob. Chang. Biol. 18, 2246–2255 (2012).

    Article  Google Scholar 

  215. Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    Article  Google Scholar 

  216. Feldman, A. F., Gianotti, D. J. S., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Observed landscape responsiveness to climate forcing. Water Resour. Res. 58, e2021WR030316 (2022).

    Article  Google Scholar 

  217. Dong, J., Akbar, R., Feldman, A., Gianotti, D. S. & Entekhabi, D. Land surfaces at the tipping-point for water and energy balance coupling. Water Resour. Res. 59, e2022WR032472 (2023).

    Article  Google Scholar 

  218. Fu, Z. et al. Critical soil moisture thresholds of plant water stress in terrestrial ecosystems. Sci. Adv. 7827, 1–13 (2022).

    Google Scholar 

  219. Fu, Z. et al. Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems. Glob. Chang. Biol. 28, 2111–2123 (2022).

    Article  CAS  Google Scholar 

  220. Jensen, J. On the convex functions and inequalities between mean values. Acta Math. 30, 175–193 (1906).

    Article  Google Scholar 

  221. Heisler-White, J. L., Knapp, A. K. & Kelly, E. F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158, 129–140 (2008).

    Article  Google Scholar 

  222. Guan, K., Sultan, B., Biasutti, M., Baron, C. & Lobell, D. B. What aspects of future rainfall changes matter for crop yields in West Africa? Geophys. Res. Lett. 42, 8001–8010 (2015).

    Article  Google Scholar 

  223. Seyfried, M. S. et al. Ecohydrological control of deep drainage in arid and semiarid regions. Ecology 86, 277–287 (2005).

    Article  Google Scholar 

  224. Sala, O. E., Gherardi, L. A. & Peters, D. P. C. Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions. Clim. Change 131, 213–227 (2015).

    Article  CAS  Google Scholar 

  225. Berkelhammer, M., Stefanescu, I. C., Joiner, J. & Anderson, L. High sensitivity of gross primary production in the Rocky mountains to summer rain. Geophys. Res. Lett. 44, 3643–3652 (2017).

    Article  Google Scholar 

  226. Nielsen, U. N. & Ball, B. A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Chang. Biol. 21, 1407–1421 (2015).

    Article  Google Scholar 

  227. Biederman, J. A. et al. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob. Chang. Biol. 22, 1867–1879 (2016).

    Article  Google Scholar 

  228. Siteur, K. et al. How will increases in rainfall intensity affect semiarid ecosystems? Water Resour. Res. 50, 5980–6001 (2014).

    Article  Google Scholar 

  229. Li, L. et al. Nonlinear carbon cycling responses to precipitation variability in a semiarid grassland. Sci. Total Environ. 781, 147062 (2021).

    Article  CAS  Google Scholar 

  230. Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95, 780–788 (2007).

    Article  Google Scholar 

  231. Fu, Z. et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficit. Nat. Commun. 13, 989–999 (2022).

    Article  CAS  Google Scholar 

  232. Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).

    Article  CAS  Google Scholar 

  233. Kannenberg, S. A. et al. Quantifying the drivers of ecosystem fluxes and water potential across the soil–plant–atmosphere continuum in an arid woodland. Agric. For. Meteorol. 329, 109269 (2023).

    Article  Google Scholar 

  234. Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).

    Article  CAS  Google Scholar 

  235. Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).

    Article  Google Scholar 

  236. Zscheischler, J. et al. Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes. J. Geophys. Res. Biogeosci. 121, 2186–2198 (2016).

    Article  Google Scholar 

  237. Smith, M. D. The ecological role of climate extremes: current understanding and future prospects. J. Ecol. 99, 651–655 (2011).

    Article  Google Scholar 

  238. Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Article  Google Scholar 

  239. Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob. Chang. Biol. 21, 2624–2633 (2015).

    Article  Google Scholar 

  240. Sala, O. E. & Lauenroth, W. K. Small rainfall events: an ecological role in semiarid regions. Oecologia 53, 301–304 (1982).

    Article  CAS  Google Scholar 

  241. Rezaei, E. E. et al. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 4, 831–846 (2023).

    Article  Google Scholar 

  242. Donohue, R. J., McVicar, T. R. & Roderick, M. L. Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob. Chang. Biol. 15, 1025–1039 (2009).

    Article  Google Scholar 

  243. Haverd, V., Ahlström, A., Smith, B. & Canadell, J. G. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall. Glob. Chang. Biol. 23, 793–800 (2017).

    Article  Google Scholar 

  244. Copernicus Climate Change Service Climate Data Store. CMIP6 climate projections. C3S https://doi.org/10.24381/cds.c866074c (2021).

  245. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  246. Fatichi, S., Ivanov, V. Y. & Caporali, E. Investigating interannual variability of precipitation at the global scale: is there a connection with seasonality? J. Clim. 25, 5512–5523 (2012).

    Article  Google Scholar 

  247. Hajek, O. L. & Knapp, A. K. Shifting seasonal patterns of water availability: ecosystem responses to an unappreciated dimension of climate change. N. Phytol. 233, 119–125 (2022).

    Article  Google Scholar 

  248. Paschalis, A., Fatichi, S., Katul, G. G. & Ivanov, V. Y. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 641–660 (2015).

    Article  Google Scholar 

  249. Guo, Q. et al. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 18, 3624–3631 (2012).

    Article  Google Scholar 

  250. Chou, C. et al. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6, 263–267 (2013).

    Article  CAS  Google Scholar 

  251. Good, S. P., Guan, K. & Caylor, K. K. Global patterns of the contributions of storm frequency, intensity, and seasonality to interannual variability of precipitation. J. Clim. 29, 3–15 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The research of A.F.F. was supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administered by Oak Ridge Associated Universities under contract with NASA. A.F.F. was partly supported by a NASA Terrestrial Ecology scoping study for a dryland field campaign. A.G.K. was supported by NSF DEB 1942133 and by the Alfred P. Sloan Foundation. The authors acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. The authors thank the climate modelling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access and the multiple funding agencies who support CMIP6 and ESGF. This work used eddy covariance data acquired and shared by the FLUXNET community, including AmeriFlux. The FLUXNET eddy covariance data processing and harmonization was carried out by the ICOS Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the OzFlux, ChinaFlux and AsiaFlux offices.

Author information

Authors and Affiliations

Authors

Contributions

A.F.F. led the Review and wrote the initial draft. X.F., A.J.F., A.G.K, A.K.K, J.A.B. and B.P. all contributed substantial edits to the initial outline, manuscript and figures. All authors contributed equally to the generation of the central ideas in the manuscript and initial figure concepts.

Corresponding author

Correspondence to Andrew F. Feldman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Madelon Case, Rene Orth, Yuting Yang and Yao Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

C4 photosynthesis

An evolutionary adaptation of photosynthesis occurring mainly in some grass and crop species under which photosynthesis is more efficient because photorespiration is largely avoided.

CAM photosynthesis

An evolutionary adaptation of photosynthesis occurring mainly in plant species in arid environments that allows them to save water by only exchanging gases with the atmosphere at night.

Community composition

The species types and their relative abundance within a defined ecosystem, here referring specifically to plants.

Clausius–Clapeyron relationship

A thermodynamic equation that describes the nonlinear increase of saturation vapour pressure, or the capacity of air to hold water, with increases in air temperature.

Hadley and Walker cells

Some of the largest organized circulations of air in the atmosphere of the Earth that contribute substantially to weather and climate patterns of the Earth.

Interception

Rainfall that is captured and stored by vegetation, even briefly, such that it is prevented from infiltrating into the soil or running off of the ground surface.

Normalized difference vegetation index

A commonly used satellite-based vegetation index that estimates greenness at the top of the vegetation canopy based on satellite measurements in the infrared portion of the electromagnetic spectrum.

Phenology

The annual cyclic nature of plant functioning, specifically referring to its periodic increase and decrease in functioning during similar months of each year.

Plant water status

A general indicator based on how much water is available for plants to use towards essential plant functions such as photosynthesis and transpiration.

Rainfall intensity

The rainfall rate or rainfall depth over a defined time period. The rainfall rate is often defined hourly across hydrological sciences, although it is designated to be daily in this Review.

Rooting profile

The distribution of the root volume of a plant across the soil depth.

Satellite-based vegetation indices

Vegetation metrics derived from satellite measurements that typically span large spatial extents, including vegetation areal cover, greenness, height, photosynthetic capacity, water content and others.

Soil moisture stress functions

An empirical relationship between decreasing soil moisture and decline in plant functions such as photosynthesis or transpiration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, A.F., Feng, X., Felton, A.J. et al. Plant responses to changing rainfall frequency and intensity. Nat Rev Earth Environ 5, 276–294 (2024). https://doi.org/10.1038/s43017-024-00534-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00534-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing