Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

From sustainable feedstocks to microbial foods

Abstract

Climate change-induced alterations in weather patterns, such as frequent and severe heatwaves, cold waves, droughts, floods, heavy rain and storms, are reducing crop yields and agricultural productivity. At the same time, greenhouse gases arising from food production and supply account for almost 30% of anthropogenic emissions. This vicious circle is producing a global food crisis. Sustainable food resources and production systems are needed now, and microbial foods are one possible solution. In this Perspective, we highlight the most promising technologies, and carbon and energy sources, for microbial food production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial foods from one-carbon (C1) compounds.
Fig. 2: Compositions and environmental footprints of animal, plant and microbial biomass.

Similar content being viewed by others

References

  1. Choi, K. R., Yu, H. E. & Lee, S. Y. Microbial food: microorganisms repurposed for our food. Microb. Biotechnol. 15, 18–25 (2022).

    Article  PubMed  Google Scholar 

  2. Jahn, L. J., Rekdal, V. M. & Sommer, M. O. A. Microbial foods for improving human and planetary health. Cell 186, 469–478 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Campbellplatt, G. Fermented foods—a world perspective. Food Res. Int. 27, 253–257 (1994).

    Article  Google Scholar 

  4. Bryant, K. L., Hansen, C. & Hecht, E. E. Fermentation technology as a driver of human brain expansion. Commun. Biol. 6, 1190 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ugalde, U. & Castrillo, J. in Applied Mycology and Biotechnology Vol. 2 (eds Khachatourians, G. G. & Arora, D. K.) 123–149 (Elsevier, 2002).

  7. Goldberg, I. Single Cell Protein Vol. 1 (Springer Science and Business Media, 2013).

  8. Jenkins, G. in Resources and Applications of Biotechnology: The New Wave Vol. 1 (ed. Greenshields, R.) 141–149 (Palgrave Macmillan, 1988).

  9. Ritala, A., Hakkinen, S. T., Toivari, M. & Wiebe, M. G. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front. Microbiol. 8, 2009 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee, S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 14, 98–105 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Riesenberg, D. & Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51, 422–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Yunus, F.-U.-N., Nadeem, M. & Rashid, F. Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J. Inst. Brew. 121, 553–557 (2015).

    Article  CAS  Google Scholar 

  13. Antunes, F. A. F. et al. Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. 3 Biotech 9, 230 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kumar, A., Anushree, Kumar, J. & Bhaskar, T. Utilization of lignin: a sustainable and eco-friendly approach. J. Energy Inst. 93, 235–271 (2020).

    Article  CAS  Google Scholar 

  15. Rajak, R. C., Jacob, S. & Kim, B. S. A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review. Sci. Total Environ. 716, 137067 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Singh, A. & Olsen, S. I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88, 3548–3555 (2011).

    Article  CAS  Google Scholar 

  17. Sarwer, A. et al. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ. Chem. Lett. 20, 2797–2851 (2022).

    Article  CAS  Google Scholar 

  18. Andayani, S. N., Lioe, H. N., Wijaya, C. H. & Ogawa, M. Umami fractions obtained from water-soluble extracts of red oncom and black oncom-Indonesian fermented soybean and peanut products. J. Food Sci. 85, 657–665 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Janssen, M., Wijffels, R. H. & Barbosa, M. J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 75, 102705 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Benefits of seaweed. Nat. Plants 9, 1 (2023).

  21. Nyyssola, A., Suhonen, A., Ritala, A. & Oksman-Caldentey, K. M. The role of single cell protein in cellular agriculture. Curr. Opin. Biotechnol. 75, 102686 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, S., An, Z. & Wang, Z.-W. in Advances in Bioenergy Vol. 5 (eds Li, Y. & Khanal, S. K.) 169–247 (Elsevier, 2020).

  23. Meyer, O. Using carbon monoxide to produce single-cell protein. BioScience 30, 405–407 (1980).

    Article  CAS  Google Scholar 

  24. Durre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63–72 (2015).

    Article  PubMed  Google Scholar 

  25. Siebert, D., Eikmanns, B. J. & Blombach, B. Exploiting aerobic carboxydotrophic bacteria for industrial biotechnology. Adv. Biochem. Eng. Biotechnol. 180, 1–32 (2022).

    CAS  PubMed  Google Scholar 

  26. Smejkalova, H., Erb, T. J. & Fuchs, G. Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS ONE 5, e13001 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Calvey, C. H. et al. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering. Metab. Eng. 75, 78–90 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Tong, S. et al. From formic acid to single-cell protein: genome-scale revealing the metabolic network of Paracoccus communis MA5. Bioresour. Bioprocess. 9, 55 (2022).

    Article  Google Scholar 

  29. Kang, Y., Kim, T., Jung, K. Y. & Park, K. T. Recent progress in electrocatalytic CO2 reduction to pure formic acid using a solid-state electrolyte device. Catalysts 13, 955 (2023).

    Article  CAS  Google Scholar 

  30. Matassa, S., Batstone, D. J., Hulsen, T., Schnoor, J. & Verstraete, W. Can direct conversion of used nitrogen to new feed and protein help feed the world? Environ. Sci. Technol. 49, 5247–5254 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Hu, X. et al. Microbial protein out of thin air: fixation of nitrogen gas by an autotrophic hydrogen-oxidizing bacterial enrichment. Environ. Sci. Technol. 54, 3609–3617 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Xiang, S. et al. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J. Microbiol. Biotechnol. 36, 144 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, B. et al. Pathways to a green ammonia future. ACS Energy Lett. 7, 3032–3038 (2022).

    Article  CAS  Google Scholar 

  34. Ye, D. & Tsang, S. C. E. Prospects and challenges of green ammonia synthesis. Nat. Synth. 2, 612–623 (2023).

    Article  Google Scholar 

  35. Molfetta, M. et al. Protein sources alternative to meat: state of the art and involvement of fermentation. Foods 11, 2065 (2022).

  36. Liu, Y. et al. Food synthetic biology-driven protein supply transition: from animal-derived production to microbial fermentation. Chin. J. Chem. Eng. 30, 29–36 (2021).

    Article  CAS  Google Scholar 

  37. Ghazani, S. M. & Marangoni, A. G. Microbial lipids for foods. Trends Food Sci. Technol. 119, 593–607 (2022).

    Article  CAS  Google Scholar 

  38. Kim, S. W. et al. Meeting global feed protein demand: challenge, opportunity, and strategy. Annu. Rev. Anim. Biosci. 7, 221–243 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Castro-Muñoz, R., Zamidi Ahmad, M., Malankowska, M. & Coronas, J. A new relevant membrane application: CO2 direct air capture (DAC). Chem. Eng. J. 446, 137047 (2022).

    Article  Google Scholar 

  40. Ghosh, A. & Kiran, B. Carbon concentration in algae: reducing CO2 from exhaust gas. Trends Biotechnol. 35, 806–808 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Rasul, S., Pugnant, A., Xiang, H., Fontmorin, J.-M. & Yu, E. H. Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. J. CO2 Util. 32, 1–10 (2019).

    Article  CAS  Google Scholar 

  42. Lachore, W. L., Andoshe, D. M., Mekonnen, M. A. & Hone, F. G. Recent progress in electron transport bilayer for efficient and low-cost perovskite solar cells: a review. J. Solid State Electrochem. 26, 295–311 (2022).

    Article  CAS  Google Scholar 

  43. Whittaker, J. A., Johnson, R. I., Finnigan, T. J. A., Avery, S. V. & Dyer, P. S. in Grand Challenges in Fungal Biotechnology Vol. 1 (ed. Nevalainen, H.) 59–79 (Springer, 2020).

  44. Ling, C. et al. Engineering self-flocculating Halomonas campaniensis for wastewaterless open and continuous fermentation. Biotechnol. Bioeng. 116, 805–815 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, J. A. et al. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol. 41, 798–816 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Matelbs, R. I. & Tannenbaum, S. E. Single-cell protein. Econ. Bot. 22, 42–50 (1968).

    Article  Google Scholar 

  48. Lee, H. S., Park, H. J. & Kim, M. K. Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high fat diet. Nutr. Res. Pract. 2, 204–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karimi, S. et al. Evaluation of filamentous fungal biomass cultivated on vinasse as an alternative nutrient source of fish feed: protein, lipid, and mineral composition. Fermentation 5, 99 (2019).

    Article  CAS  Google Scholar 

  50. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cooperative Research Program for Agriculture Science and Technology Development (project RS-2021-RD009210) from the Rural Development Administration, Republic of Korea, and also by the development of platform technologies of microbial cell factories for the next-generation biorefineries project (2022M3J5A1056117) from National Research Foundation supported by the Ministry of Science and ICT, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

K.R.C. researched data for the article and contributed to the conceptualization, writing, reviewing and editing of the article. S.Y.J. researched data for the article and contributed to the conceptualization, writing, reviewing and editing of the article. S.Y.L. contributed to the conceptualization, reviewing and editing of the article.

Corresponding author

Correspondence to Sang Yup Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Yongjin Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K.R., Jung, S.Y. & Lee, S.Y. From sustainable feedstocks to microbial foods. Nat Microbiol (2024). https://doi.org/10.1038/s41564-024-01671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41564-024-01671-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research