Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Neural cell isolation from adult macaques for high-throughput analyses and neurosphere cultures

Abstract

The low number of neural progenitor cells (NPCs) present in the adult and aged primate brains represents a challenge for generating high-yield and viable in vitro cultures of primary brain cells. Here we report a step-by-step approach for the fast and reproducible isolation of high-yield and viable primary brain cells, including mature neurons, immature cells and NPCs, from adult and aged macaques. We describe the anesthesia, transcardial perfusion and brain tissue preparation; the subsequent microdissection of the regions of interest and their enzymatic dissociation, leading to the separation of single cells. The cell isolation steps of our protocol can also be used for routine cell culturing, in particular for NPC expansion and differentiation, suitable for studies of hippocampal neurogenesis in the adult macaque brain. The purified primary brain cells are largely free from myelin debris and erythrocytes, paving the way for multiple downstream applications in vitro and in vivo. When combined with single-cell profiling techniques, this approach allows an unbiased and comprehensive mapping of cell states in the adult and aged macaque brain, which is needed to advance our understanding of human cognitive and neurological diseases. The neural cell isolation protocol requires 4 h and a team of four to six users with expertize in primary brain cell isolation to avoid tissue hypoxia during the time-sensitive steps of the procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the protocol design and steps.
Fig. 2: Dissection of the cortex and hippocampus.
Fig. 3: Confirmation of macaque cortex single-cell suspension purity following magnetic separation and washes.
Fig. 4: Cell composition in the adult and aged macaque V1.
Fig. 5: Cell populations in adult and aged macaque PFC.
Fig. 6: The age-related changes in gene expression.
Fig. 7: Representative images showing the expansion and differentiation of adult macaque hippocampal NPCs in vitro.
Fig. 8: Characterization of macaque hippocampal NPC differentiation in vitro.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article, the primary supporting research paper of macaque hippocampus20. The scRNA-seq datasets shown in Figs. 46 are publicly available at ArrayExpress under the accession code E-MTAB-12399. Source data are provided with this paper.

Code availability

The code for processing the datasets is available as jupyter notebooks at GitHub (https://github.com/leitang607/macaque_Neural_cell).

References

  1. Brewer, G. J. & Torricelli, J. R. Isolation and culture of adult neurons and neurospheres. Nat. Protoc. 2, 1490–1498 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Crouch, E. E. & Doetsch, F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat. Protoc. 13, 738–751 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Guo, W., Patzlaff, N. E., Jobe, E. M. & Zhao, X. Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat. Protoc. 7, 2005–2012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valtcheva, M. V. et al. Surgical extraction of human dorsal root ganglia from organ donors and preparation of primary sensory neuron cultures. Nat. Protoc. 11, 1877–1888 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gray, D. T. & Barnes, C. A. Experiments in macaque monkeys provide critical insights into age-associated changes in cognitive and sensory function. Proc. Natl Acad. Sci. USA 116, 26247–26254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou, Y. et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570, 326–331 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Qiu, P. et al. BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders. Natl Sci. Rev. 6, 87–100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park, T. I.-H. et al. Routine culture and study of adult human brain cells from neurosurgical specimens. Nat. Protoc. 17, 190–221 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Park, T. I.-H. et al. Isolation and culture of functional adult human neurons from neurosurgical brain specimens. Brain Commun. 2, fcaa171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nott, A., Schlachetzki, J. C. M., Fixsen, B. R. & Glass, C. K. Nuclei isolation of multiple brain cell types for omics interrogation. Nat. Protoc. 16, 1629–1646 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, Y. et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, eaat8077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, L. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Franjic, D. et al. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 110, 452–469.e14 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Ayhan, F. et al. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron 109, 2091–2105.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 109, 3088–3103.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei, J.-R. et al. Identification of visual cortex cell types and species differences using single-cell RNA sequencing. Nat. Commun. 13, 6902 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hao, Z.-Z. et al. Single-cell transcriptomics of adult macaque hippocampus reveals neural precursor cell populations. Nat. Neurosci. 25, 805–817 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Zhong, S. et al. Decoding the development of the human hippocampus. Nature 577, 531–536 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmitz, M. T. et al. The development and evolution of inhibitory neurons in primate cerebrum. Nature 603, 871–877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, X. et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350, aac9462 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ting, J. T. et al. Preparation of acute brain slices using an optimized N-methyl-d-glucamine protective recovery method. J. Vis. Exp. 26, 53825 (2018).

    Google Scholar 

  26. Huang, W. et al. Linking transcriptomes with morphological and functional phenotypes in mammalian retinal ganglion cells. Cell Rep. 40, 111322 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Mich, J. K. et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 34, 108754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Braidy, N. et al. Effects of kynurenine pathway metabolites on intracellular NAD synthesis and cell death in human primary astrocytes and neurons. Int. J. Tryptophan Res. 2, 61–69 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bohár, Z., Toldi, J., Fülöp, F. & Vécsei, L. Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int. J. Mol. Sci. 16, 9772–9793 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kanwar, J. R., Kanwar, R. K. & Krissansen, G. W. Simultaneous neuroprotection and blockade of inflammation reverses autoimmune encephalomyelitis. Brain 127, 1313–1331 (2004).

    Article  PubMed  Google Scholar 

  33. Minnella, A. M. et al. Excitotoxic superoxide production and neuronal death require both ionotropic and non-ionotropic NMDA receptor signaling. Sci. Rep. 8, 17522 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lysko, P. G., Webb, C. L., Yue, T. L., Gu, J. L. & Feuerstein, G. Neuroprotective effects of tetrodotoxin as a Na+ channel modulator and glutamate release inhibitor in cultured rat cerebellar neurons and in gerbil global brain ischemia. Stroke 25, 2476–2482 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Armand, E. J., Li, J., Xie, F., Luo, C. & Mukamel, E. A. Single-cell sequencing of brain cell transcriptomes and epigenomes. Neuron 109, 11–26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, K. et al. Human in vitro systems for examining synaptic function and plasticity in the brain. J. Neurophysiol. 123, 945–965 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Fattorelli, N. et al. Stem-cell-derived human microglia transplanted into mouse brain to study human disease. Nat. Protoc. 16, 1013–1033 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Hochgerner, H., Zeisel, A., Lönnerberg, P. & Linnarsson, S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat. Neurosci. 21, 290–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kang, C.-C. et al. Single cell-resolution western blotting. Nat. Protoc. 11, 1508–1530 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stevenson, R., Samokhina, E., Rossetti, I., Morley, J. W. & Buskila, Y. Neuromodulation of glial function during neurodegeneration. Front. Cell. Neurosci. 14, 278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rustenhoven, J., Jansson, D., Smyth, L. C. & Dragunow, M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol. Sci. 38, 291–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Spaethling, J. M. et al. Primary cell culture of live neurosurgically resected aged adult human brain cells and single cell transcriptomics. Cell Rep. 18, 791–803 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roberts, A. C. & Clarke, H. F. Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proc. Natl Acad. Sci. USA 116, 26297–26304 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting activated cell populations using single-cell RNA-seq. Neuron 96, 313–329.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Iannielli, A. et al. Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep. 22, 2066–2079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saleem, K. S. & Logothetis, N. K. A Combined MRI and Histology Atlas of the Rhesus Monkey Brain in Stereotaxic Coordinates (Academic Press, 2012).

  54. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao, D. et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat. Commun. 9, 2865 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).

    CAS  PubMed  Google Scholar 

  57. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge C. Xu for language editing and proofreading. This research was supported by grants from the National Key R&D Program of China (2018YFA0108300), the Natural Science Foundation of China (81961128021, 81870682, 82201231 and 32270864), the National Key R&D Program of China (2022YEF0203200), the Major Project on Brain Science and Brain-Like Computing of the Ministry of Science and Technology of China (2021ZD0200103), the Basic and Applied Basic Research Foundation of Guangdong Province (2023A1515011593), the Guangdong Provincial Key R&D Programs (2018B030335001 and 2018B030337001), the Science and Technology Program of Guangzhou (202007030010 and 202007030011), the China Postdoctoral Science Foundation (2022M713609) and Science and Technology Planning Projects of Guangzhou City (2019A1515012033).

Author information

Authors and Affiliations

Authors

Contributions

S.L. conceived and supervised the protocol. S.L., J.-R.W. and D.X. contributed to the development of the protocol and wrote the manuscript. L.T., N.X., R.L., Y.S., Z.X., X.S. J.G. and M.X. helped with protocol optimization.

Corresponding author

Correspondence to Sheng Liu.

Ethics declarations

Competing interests

S.L. and J.-R.W. have developed the patent for this work (no. ZL202111114666.6, Sun Yat-sen University Zhongshan Ophthalmic Center).

Peer review

Peer review information

Nature Protocols thanks Orly Lazarov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wei, J. R. et al. Nat. Commun. 13, 6902 (2022): https://doi.org/10.1038/s41467-022-34590-1

Hao, Z. Z. et al. Nat. Neurosci. 25, 805–817 (2022): https://doi.org/10.1038/s41593-022-01073-x

Xiao, D. et al. Nat. Commun. 9, 2865 (2018): https://doi.org/10.1038/s41467-018-05209-1

Extended data

Extended Data Fig. 1 Representative figures and electrophysiological recordings demonstrating the viability of acute brain slices in the adult macaque cortex.

a, Representative images were acquired from the cortex in acute slices from adult macaques. Scale bar, 20 μm. b, The single whole-cell patch-clamp electrophysiological recordings of pyramidal and interneuron neurons showed a multi-action potential firing cell. Pyr, pyramidal neuron; InN, inhibitory neurons.

Extended Data Fig. 2 Primary culture of cells and labeling assessments from the hippocampus of adult macaque monkeys.

a, b, The neurospheres are formed from cells cultured from the hippocampus of adult macaque monkeys. Three weeks after cell seeding, NPCs elucidated spindle morphology in a. Thirty days after cell seeding in b. D, days. Scale bars, a, 40 μm; b, 160 μm. c, d, NPCs view in P1 and P4 passages; P, passages. Scale bars, c, 80 μm; d, 60 μm. ej, Cultured NPCs form proliferating neurospheres positive for NESTIN, MKI67, PAX6, VIMENTIN, SOX4 and HMGB2. Scale bars, 40 μm.

Extended Data Fig. 3 Preparation of fire-polishing glass Pasteur pipettes.

a, The glass pipette is heated in the top part of the flame and spun evenly. b, The heated pipette is quickly drawn out. c, The sharply drawn-out edge is quickly heated to form a smooth and round edge. df, Example of three fire-polishing glass Pasteur pipettes with 150-μm, 350-μm, 650-μm bores. Scale bars, 200 μm.

Supplementary information

Reporting Summary

Supplementary Video 1

The morphologies of recorded neurons.

Supplementary Video 2

The morphologies of recorded neurons.

Source data

Source Data Figs. 7 and 8

Statistical source data for Figs. 7g and 8c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, JR., Xiao, D., Tang, L. et al. Neural cell isolation from adult macaques for high-throughput analyses and neurosphere cultures. Nat Protoc 18, 1930–1957 (2023). https://doi.org/10.1038/s41596-023-00820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00820-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing