Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Routine culture and study of adult human brain cells from neurosurgical specimens

Abstract

When modeling disease in the laboratory, it is important to use clinically relevant models. Patient-derived human brain cells grown in vitro to study and test potential treatments provide such a model. Here, we present simple, highly reproducible coordinated procedures that can be used to routinely culture most cell types found in the human brain from single neurosurgically excised brain specimens. The cell types that can be cultured include dissociated cultures of neurons, astrocytes, microglia, pericytes and brain endothelial and neural precursor cells, as well as explant cultures of the leptomeninges, cortical slice cultures and brain tumor cells. The initial setup of cultures takes ~2 h, and the cells are ready for further experiments within days to weeks. The resulting cells can be studied as purified or mixed population cultures, slice cultures and explant-derived cultures. This protocol therefore enables the investigation of human brain cells to facilitate translation of neuroscience research to the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram of the step-by-step procedures in isolating neurons, brain endothelia, NPCs, microglia, mixed glia (astrocytes, microglia and pericytes) and brain tumor cells from post-operative brain specimens.
Fig. 2: Photomicrographs and electrophysiological recordings demonstrating the presence of mature primary adult human neurons in vitro.
Fig. 3: Photomicrographs showing the presence of GFAP-positive astrocytes and their response to inflammatory stimuli.
Fig. 4: Photomicrographs showing purified microglia expressing microglia markers and responding to pro-inflammatory cytokines.
Fig. 5: Photomicrographs showing isolated brain neurovascular cell types, brain endothelial cells (panel a) and brain pericytes (panel b).
Fig. 6: A timeline and representative figures showing the isolation, expansion and differentiation of primary adult human neural progenitor cells in vitro.
Fig. 7: Photomicrographs illustrating the growth and characterization of BTCs.
Fig. 8: Flow diagram of the step-by-step procedure for processing organotypic brain slice and explant cultures from post-operative human brain specimens and the leptomeninges.
Fig. 9: Photomicrographs and electrophysiological recordings demonstrating the presence of viable and functional adult human brain slice cultures.
Fig. 10: Photomicrographs of leptomeningeal explant cultures.

Similar content being viewed by others

Data availability

The data in our protocol figures are composed entirely of photomicrographs and electrophysiological recordings displaying the results anticipated with the use of the protocols. Previous uses of the protocols are available in the literature and clearly cited, providing further examples of the types of data that can be obtained from using this protocol.

References

  1. Dragunow, M. The adult human brain in preclinical drug development. Nat. Rev. Drug Discov. 7, 659–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Gibbons, H. M. & Dragunow, M. Adult human brain cell culture for neuroscience research. Int. J. Biochem. Cell Biol. 42, 844–856 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, A. M. & Dragunow, M. The human side of microglia. Trends Neurosci. 37, 125–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Dragunow, M. Human brain neuropharmacology: a platform for translational neuroscience. Trends Pharmacol. Sci. 41, 777–792 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, I. H., Lerou, P. H., Zhao, R., Huo, H. & Daley, G. Q. Generation of human-induced pluripotent stem cells. Nat. Protoc. 3, 1180–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, Y. et al. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat. Protoc. 8, 1670–1679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moe, M. C. et al. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128, 2189–2199 (2005).

    Article  PubMed  Google Scholar 

  9. Westerlund, U. et al. Stem cells from the adult human brain develop into functional neurons in culture. Exp. Cell Res. 289, 378–383 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Rustenhoven, J. et al. Modelling physiological and pathological conditions to study pericyte biology in brain function and dysfunction. BMC Neurosci. 19, 6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Walsh, K., Megyesi, J. & Hammond, R. Human central nervous system tissue culture: a historical review and examination of recent advances. Neurobiol. Dis. 18, 2–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Brewer, G. J. et al. Culture and regeneration of human neurons after brain surgery. J. Neurosci. Methods 107, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Sharif, A. & Prevot, V. Isolation and culture of human astrocytes. Methods Mol. Biol. 814, 137–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Gibbons, H. M. et al. Cellular composition of human glial cultures from adult biopsy brain tissue. J. Neurosci. Methods 166, 89–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. De Groot, C. J. et al. Isolation and characterization of adult microglial cells and oligodendrocytes derived from postmortem human brain tissue. Brain Res. Brain Res. Protoc. 5, 85–94 (2000).

    Article  PubMed  Google Scholar 

  16. Rustenhoven, J. et al. Isolation of highly enriched primary human microglia for functional studies. Sci. Rep. 6, 19371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palmer, T. D. et al. Cell culture: progenitor cells from human brain after death. Nature 411, 42–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, S. U., Moretto, G., Ruff, B. & Shin, D. H. Culture and cryopreservation of adult human oligodendrocytes and astrocytes. Acta Neuropathol. 64, 172–175 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Bernas, M. J. et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat. Protoc. 5, 1265–1272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, T. I. et al. Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression. Sci. Rep. 6, 26587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi, P. J. et al. The synthesis of a novel Crizotinib heptamethine cyanine dye conjugate that potentiates the cytostatic and cytotoxic effects of Crizotinib in patient-derived glioblastoma cell lines. Bioorg. Med. Chem. Lett. 29, 2617–2621 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park, T. I.-H. et al. Isolation and culture of functional adult human neurons from neurosurgical brain specimens. Brain Commun. 2, fcaa171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smyth, L. C. D. et al. Unique and shared inflammatory profiles of human brain endothelia and pericytes. J. Neuroinflammation 15, 138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rustenhoven, J. et al. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J. Neuroinflammation 13, 37 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rustenhoven, J. et al. An anti-inflammatory role for C/EBPδ in human brain pericytes. Sci. Rep. 5, 12132 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rustenhoven, J. et al. PU.1 regulates Alzheimer’s disease-associated genes in primary human microglia. Mol. Neurodegener. 13, 44 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jansson, D. et al. Cardiac glycosides target barrier inflammation of the vasculature, meninges and choroid plexus. Commun. Biol. 4, 260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, T. I. et al. Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons. PLoS One 7, e37742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi, P. J. et al. PARP inhibitor cyanine dye conjugate with enhanced cytotoxic and antiproliferative activity in patient derived glioblastoma cell lines. Bioorg. Med. Chem. Lett. 30, 127252 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Brewer, G. J. & Torricelli, J. R. Isolation and culture of adult neurons and neurospheres. Nat. Protoc. 2, 1490–1498 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ray, B., Chopra, N., Long, J. M. & Lahiri, D. K. Human primary mixed brain cultures: preparation, differentiation, characterization and application to neuroscience research. Mol. Brain 7, 63 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jana, M., Jana, A., Pal, U. & Pahan, K. A simplified method for isolating highly purified neurons, oligodendrocytes, astrocytes, and microglia from the same human fetal brain tissue. Neurochem. Res. 32, 2015–2022 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ayuso-Sacido, A., Roy, N. S., Schwartz, T. H., Greenfield, J. P. & Boockvar, J. A. Long-term expansion of adult human brain subventricular zone precursors. Neurosurgery 62, 223–231 (2008).

    Article  PubMed  Google Scholar 

  35. Gibbons, H. M. et al. Valproic acid induces microglial dysfunction, not apoptosis, in human glial cultures. Neurobiol. Dis. 41, 96–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Smith, A. M. et al. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J. Neuroinflammation 10, 85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, L. et al. Postmortem adult human microglia proliferate in culture to high passage and maintain their response to amyloid-β. J. Alzheimers Dis. 54, 1157–1167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cano-Abad, M. F. et al. New insights on culture and calcium signalling in neurons and astrocytes from epileptic patients. Int. J. Dev. Neurosci. 29, 121–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Williams, K., Dooley, N., Ulvestad, E., Becher, B. & Antel, J. P. IL-10 production by adult human derived microglial cells. Neurochem. Int. 29, 55–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, K. et al. Human in vitro systems for examining synaptic function and plasticity in the brain. J. Neurophysiol. 123, 945–965 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Paul, G. et al. The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7, e35577 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Verbeek, M. M., Westphal, J. R., Ruiter, D. J. & de Waal, R. M. T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J. Immunol. 154, 5876–5884 (1995).

    PubMed  Google Scholar 

  44. Arsenijevic, Y. et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp. Neurol. 170, 48–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Narayan, P. J., Gibbons, H. M., Mee, E. W., Faull, R. L. & Dragunow, M. High throughput quantification of cells with complex morphology in mixed cultures. J. Neurosci. Methods 164, 339–349 (2007).

    Article  PubMed  Google Scholar 

  46. Smith, A. M. et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia 61, 929–942 (2013).

    Article  PubMed  Google Scholar 

  47. Jansson, D. et al. A role for human brain pericytes in neuroinflammation. J. Neuroinflammation 11, 104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jansson, D. et al. Interferon-γ blocks signalling through PDGFRβ in human brain pericytes. J. Neuroinflammation 13, 249 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rustenhoven, J., Jansson, D., Smyth, L. C. & Dragunow, M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol. Sci. 38, 291–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Hossain, A. et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells 33, 2400–2415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perriot, S. et al. Human induced pluripotent stem cell-derived astrocytes are differentially activated by multiple sclerosis-associated cytokines. Stem Cell Rep. 11, 1199–1210 (2018).

    Article  CAS  Google Scholar 

  53. Waldvogel, H. J., Curtis, M. A., Baer, K., Rees, M. I. & Faull, R. L. Immunohistochemical staining of post-mortem adult human brain sections. Nat. Protoc. 1, 2719–2732 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Mizee, M. R. et al. Isolation of primary microglia from the human post-mortem brain: effects of ante- and post-mortem variables. Acta Neuropathol. Commun. 5, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sabbagh, M. F. & Nathans, J. A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture. eLife 9, e51276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ting, J. T. et al. Preparation of acute brain slices using an optimized N-methyl-D-glucamine protective recovery method. J. Vis. Exp. 2018, 53825 (2018).

    Google Scholar 

  57. Le Duigou, C. et al. Imaging pathological activities of human brain tissue in organotypic culture. J. Neurosci. Methods 298, 33–44 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dragunow, M., Feng, S., Rustenhoven, J., Curtis, M. & Faull, R. Studying human brain inflammation in leptomeningeal and choroid plexus explant cultures. Neurochem. Res. 41, 579–588 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. De Groot, C. J. et al. Establishment of human adult astrocyte cultures derived from postmortem multiple sclerosis and control brain and spinal cord regions: immunophenotypical and functional characterization. J. Neurosci. Res. 49, 342–354 (1997).

    Article  PubMed  Google Scholar 

  60. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Smyth, L. C. D. et al. Markers for human brain pericytes and smooth muscle cells. J. Chem. Neuroanat. 92, 48–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Guo, W., Patzlaff, N. E., Jobe, E. M. & Zhao, X. Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat. Protoc. 7, 2005–2012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vinci, M. et al. Functional diversity and cooperativity between subclonal populations of pediatric glioblastoma and diffuse intrinsic pontine glioma cells. Nat. Med. 24, 1204–1215 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, J. H. et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560, 243–247 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Andersson, M. et al. Optogenetic control of human neurons in organotypic brain cultures. Sci. Rep. 6, 24818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwarz, N. et al. Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease. eLife 8, e48417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwarz, N. et al. Human cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Sci. Rep. 7, 12249 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Skipor, J. & Thiery, J. C. The choroid plexus-cerebrospinal fluid system: undervaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiol. Exp. (Wars.) 68, 414–428 (2008).

    Google Scholar 

  70. Bjorefeldt, A., Illes, S., Zetterberg, H. & Hanse, E. Neuromodulation via the cerebrospinal fluid: insights from recent in vitro studies. Front. Neural Circuits 12, 5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bjorefeldt, A. et al. Human cerebrospinal fluid increases the excitability of pyramidal neurons in the in vitro brain slice. J. Physiol. 593, 231–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Smith, A. M., Gibbons, H. M., Lill, C., Faull, R. L. & Dragunow, M. Isolation and culture of adult human microglia within mixed glial cultures for functional experimentation and high-content analysis. Methods Mol. Biol. 1041, 41–51 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are tremendously grateful to the generous neurosurgical brain tissue donors and their families, without whom this research could not be performed; thank you so much. They are the real drivers of this work, and it is because of their special gifts of brain tissue that we can undertake this work for the benefit of future patients. We also thank our collaborators and research technicians: R. Faull, M. Curtis, J. Montgomery, H. Gibbons, M. Cheung, Y. Jung, S.-L. Kim, I. Semenyajenko and M. Eszes from Auckland University; and C. Turner, P. Bergin, E. Walker, L. Roberts and S. Tharakan from Auckland Hospital and LabPlus. This work was supported by the Hugh Green Foundation (funders of the Hugh Green Biobank), a Programme Grant from the Health Research Council of New Zealand, the Sir Thomas and Lady Duncan Trust, the Coker Charitable Trust, and Brain Research New Zealand to M.D. T.I.-H.P., the Centre for Brain Research Douglas Neurosurgical Postdoctoral Research Fellow, is funded by the Douglas Charitable Trust through a School of Medicine Foundation Grant to M.D. (director of the Hugh Green Biobank).

Author information

Authors and Affiliations

Authors

Contributions

T.I.-H.P. conceived, optimized and established the neuronal, neural progenitor, microglia, pericyte and endothelial cultures; optimized the tissue-collection process and wrote most of the manuscript. L.C.D.S. conceived, optimized and established the pericyte and endothelial cultures and wrote parts of the manuscript. M.A. conceived, optimized and established the pericyte and mixed glial cultures and wrote parts of the manuscript. Z.R.W. optimized the microglial cultures and wrote parts of the manuscript. J.R. conceived, optimized and established the pericyte and microglial cultures and wrote parts of the manuscript. K.L. conceived, optimized and established the neuronal and brain slice cultures and wrote parts of the manuscript. D.J. conceived, optimized and established the mixed glial and explant cultures. A.S. optimized the mixed glial cultures and inflammatory experiments. S.F. conceived, optimized and established the mixed glial and explant cultures. J.C., P.H. and P.S. are neurosurgeons and were part of the clinical research team; they aided in design and coordination of experiments, consented and provided tissue and optimized the biopsy tissue-collection process. E.M.is a neurosurgeon and was part of the clinical research team. He conceived these projects with M.D. and consented and provided biopsy tissue. M.D.was the study leader and Principal Investigator. He conceived, led and funded the entire program and supervised T.I.-H.P., L.C.D.S., M.A., Z.R.W., J.R., K.L., D.J., A.S. and S.F. in establishing the Hugh Green Biobank.

Corresponding author

Correspondence to Mike Dragunow.

Ethics declarations

Competing interests

M.D. has developed a platform called ‘Neurovalida’ for CNS drug discovery and target validation.

Peer review

Peer review information

Nature Protocols thanks Henner Koch, Debomoy K. Lahiri, Jonas Ort and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Park, T. I.-H. et al. Brain Commun. 2, fcaa171 (2020): https://doi.org/10.1093/braincomms/fcaa171

Rustenhoven, J. et al. Sci. Rep. 6, 19371 (2016): https://doi.org/10.1038/srep19371

Jansson, D. et al. Commun. Biol. 4, 260 (2021): https://doi.org/10.1038/s42003-021-01787-x

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Supplementary Tables 1–3 and Supplementary Methods.

Supplementary Data 1

Raw data for Supplementary Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, T.IH., Smyth, L.C.D., Aalderink, M. et al. Routine culture and study of adult human brain cells from neurosurgical specimens. Nat Protoc 17, 190–221 (2022). https://doi.org/10.1038/s41596-021-00637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00637-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research