Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Screening circular RNAs with functional potential using the RfxCas13d/BSJ-gRNA system

Abstract

Circular RNAs (circRNAs) are covalently enclosed, single-stranded RNAs produced by back-splicing of pre-mRNA exons that have recently emerged as an important class of molecules in gene expression regulation. circRNAs share overlapping sequences with their cognate linear mRNAs except the back-splicing junction (BSJ) sites. This feature makes it difficult to discriminate between the functions of circRNAs and their cognate mRNAs. We previously reported that the programmable RNA-guided, RNA-targeting CRISPR–Cas13 (RfxCas13d) system effectively and specifically discriminates circRNAs from mRNAs by using guide RNAs (gRNAs) targeting sequences across BSJ sites. Here, we describe a detailed protocol based on this RfxCas13d/BSJ-gRNA system for large-scale functional circRNA screening in human cell lines. The protocol includes gRNA library design, construction and transduction, analysis of screening results and validation of functional circRNA candidates. In total, it takes ~3–4 months of collaborative work between a well-trained molecular biologist and a bioinformatic expert. This protocol can be applied both in cells and in vivo to identify highly expressed circRNAs affecting cell growth, either in unperturbed conditions or under environmental stimulation, without disturbing their cognate linear mRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategy of the circRNA knockdown by RfxCas13d.
Fig. 2: Overview of the experimental procedure.
Fig. 3: Strategy of the BSJ-gRNA library design.
Fig. 4: CDCscreen computational pipeline to identify candidate circRNAs.
Fig. 5: Results of a functional circRNA screen using the RfxCas13d/BSJ-gRNA system.

Similar content being viewed by others

Data availability

The data used to generate the example results shown in Fig. 5 were originally published in ref. 23. All sequencing datasets have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus (GSE149690, GSE149691 and GSE149692) and National Omics Data Encyclopedia (OEP000887, OEP000888 and OEP000889). All the plasmids, cell lines and reagents presented in the paper are available on request from the corresponding author.

Code availability

The custom Perl and Shell scripts for the computational pipeline of the CDCscreen in this paper are available at https://github.com/YangLab/CDCscreen.

References

  1. Hsu, M. T. & Coca-Prados, M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339–340 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Cocquerelle, C., Mascrez, B., Hetuin, D. & Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019–1030 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Cocquerelle, C., Daubersies, P., Majerus, M. A., Kerckaert, J. P. & Bailleul, B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 11, 1095–1098 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nigro, J. M. et al. Scrambled exons. Cell 64, 607–613 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. & Chen, L. L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12, R16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PloS One 7, e30733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Westholm, J. O. et al. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966–1980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, J. U., Agarwal, V., Guo, H. & Bartel, D. P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ye, C. Y., Chen, L., Liu, C., Zhu, Q. H. & Fan, L. Widespread noncoding circular RNAs in plants. N. Phytol. 208, 88–95 (2015).

    Article  CAS  Google Scholar 

  14. Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Fan, X. et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 16, 148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Huang, R. et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy 13, 1722–1741 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Li, Q. et al. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 30, 157–173.e7 (2019).

    Article  PubMed  CAS  Google Scholar 

  20. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, Y. L. et al. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol. 18, e3000582 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Conn, V. M. et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 3, 17053 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Li, S. Q. et al. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat. Methods 18, 51–59 (2021).

    Article  PubMed  CAS  Google Scholar 

  24. Abdelmohsen, K. et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Li, X. et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell 67, 214–227.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Xia, P. et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48, 688–701.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, X., Yang, L. & Chen, L. L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Kushawah, G. et al. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev. Cell 54, 805–817.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, Y. et al. Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 22, 41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ai, Y., Liang, D. & Wilusz, J. E. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res. In press. https://doi.org/10.1093/nar/gkac159 (2022).

  35. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, C. et al. Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell 175, 212–223.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wessels, H. H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67––71 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Ma, X. K. et al. CIRCexplorer3: a CLEAR pipeline for direct comparison of circular and linear RNA expression. Genomics Proteom. Bioinforma. 17, 511–521 (2019).

    Article  Google Scholar 

  48. Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Ye, L. et al. In vivo CRISPR screening in CD8 T cells with AAV-Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37, 1302–1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Bernabei, P. A. et al. In vitro chemosensitivity testing of leukemic cells: development of a semiautomated colorimetric assay. Hematol. Oncol. 7, 243–253 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Xue for providing sequencing data-analysis support. This study was supported by the National Key R&D Program of China (2021YFA1300501), the National Natural Science Foundation of China (NSFC) (31725009, 91940303 and 31821004), the Center for Excellence in Molecular Cell Science (CEMCS) (2020DF03) and the HHMI International Program (55008728) to L.-L.C.; and NSFC (32101042) to S.L. L.-L.C. acknowledges support from the Xplorer Prize.

Author information

Authors and Affiliations

Authors

Contributions

L.-L.C. supervised and conceived the project. L.-L.C., S.L. and H.W. designed the experiments. S.L. and H.W. performed the experiments. L.-L.C., S.L. and H.W. wrote the manuscript.

Corresponding author

Correspondence to Ling-Ling Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks David Gilot and Jun Wei Pek for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Li, S. et al. Nat. Methods 18, 51–59 (2021): https://doi.org/10.1038/s41592-020-01011-4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, H. & Chen, LL. Screening circular RNAs with functional potential using the RfxCas13d/BSJ-gRNA system. Nat Protoc 17, 2085–2107 (2022). https://doi.org/10.1038/s41596-022-00715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00715-5

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research