Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The expanding regulatory mechanisms and cellular functions of circular RNAs

Abstract

Many protein-coding genes in higher eukaryotes can produce circular RNAs (circRNAs) through back-splicing of exons. CircRNAs differ from mRNAs in their production, structure and turnover and thereby have unique cellular functions and potential biomedical applications. In this Review, I discuss recent progress in our understanding of the biogenesis of circRNAs and the regulation of their abundance and of their biological functions, including in transcription and splicing, sequestering or scaffolding of macromolecules to interfere with microRNA activities or signalling pathways, and serving as templates for translation. I further discuss the emerging roles of circRNAs in regulating immune responses and cell proliferation, and the possibilities of applying circRNA technologies in biomedical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Back-splicing and alternative (back-) splicing in the formation of circular RNAs.
Fig. 2: Regulation of back-splicing efficiency.
Fig. 3: Nuclear export and degradation of circular RNAs.
Fig. 4: Molecular mechanisms of circular RNA function.
Fig. 5: Cellular and physiological roles of circular RNAs.

Similar content being viewed by others

References

  1. Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    CAS  PubMed  Google Scholar 

  2. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).

    CAS  PubMed  Google Scholar 

  4. Lasda, E. & Parker, R. Circular RNAs: diversity of form and function. RNA 20, 1829–1842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, X., Yang, L. & Chen, L. L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428–442 (2018).

    CAS  PubMed  Google Scholar 

  6. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    CAS  PubMed  Google Scholar 

  7. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019–1030 (1993).

    CAS  PubMed  Google Scholar 

  8. Cocquerelle, C., Daubersies, P., Majerus, M. A., Kerckaert, J. P. & Bailleul, B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 11, 1095–1098 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cocquerelle, C., Mascrez, B., Hetuin, D. & Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).

    CAS  PubMed  Google Scholar 

  10. Nigro, J. M. et al. Scrambled exons. Cell 64, 607–613 (1991).

    CAS  PubMed  Google Scholar 

  11. Pasman, Z., Been, M. D. & Garcia-Blanco, M. A. Exon circularization in mammalian nuclear extracts. RNA 2, 603–610 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. & Chen, L. L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12, R16 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733 (2012). This study suggests that circRNA production can be a general feature of gene expression in human cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013). This study uncovers circRNAs as a large class of RNA molecules in human cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).

    CAS  PubMed  Google Scholar 

  16. Shen, Y., Guo, X. & Wang, W. Identification and characterization of circular RNAs in zebrafish. FEBS Lett. 591, 213–220 (2017).

    CAS  PubMed  Google Scholar 

  17. Westholm, J. O. et al. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966–1980 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo, J. U., Agarwal, V., Guo, H. & Bartel, D. P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013). This study reports that circRNAs are a large class of RNA molecules with functional potential.

    CAS  PubMed  Google Scholar 

  20. Fan, X. et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 16, 148 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Dong, R., Ma, X. K., Chen, L. L. & Yang, L. Increased complexity of circRNA expression during species evolution. RNA Biol. 14, 1064–1074 (2017).

    PubMed  Google Scholar 

  22. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014). This study reports that exon circularization often requires flanking ICSs and also uncovers alternative circularization.

    CAS  PubMed  Google Scholar 

  23. Veno, M. T. et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 16, 245 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Barrett, S. P., Wang, P. L. & Salzman, J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 4, e07540 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Broadbent, K. M. et al. Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics 16, 454 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Lu, T. et al. Transcriptome-wide investigation of circular RNAs in rice. RNA 21, 2076–2087 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, P. L. et al. Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9, e90859 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Dong, R., Ma, X. K., Li, G. W. & Yang, L. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinformatics 16, 226–233 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Zheng, Y., Ji, P., Chen, S., Hou, L. & Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 11, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460 (2019).

    CAS  PubMed  Google Scholar 

  31. Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015). This study reports enrichment of circRNA expression in brains and provides an atlas of circRNA expression in mammalian brains.

    CAS  PubMed  Google Scholar 

  32. You, X. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610 (2015). This study shows enrichment of circRNA expression in brains and suggests circRNAs have a potential to regulate synaptic function.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Preusser, C. et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J. Extracell. Vesicles 7, 1424473 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    CAS  PubMed  Google Scholar 

  35. Nicolet, B. P. et al. Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res. 46, 8168–8180 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. & Brown, P. O. Cell-type specific features of circular RNA expression. PLoS Genet. 9, e1003777 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X. O. et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26, 1277–1287 (2016). This study defines the diversity of alternative back-splicing and alternative splicing in circRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Errichelli, L. et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 8, 14741 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xia, P. et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48, 688–701 (2018). This study generates a circRNA-knockout mouse model that can exhibit phenotypes related to hematopoietic stem cell homeostasis.

    CAS  PubMed  Google Scholar 

  40. Li, Q. et al. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 30, 157–173 e157 (2019).

    PubMed  Google Scholar 

  41. Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).

    CAS  PubMed  Google Scholar 

  42. Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881 e813 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    CAS  PubMed  Google Scholar 

  44. Starke, S. et al. Exon circularization requires canonical splice signals. Cell Rep. 10, 103–111 (2015).

    CAS  PubMed  Google Scholar 

  45. Wang, Y. & Wang, Z. Efficient backsplicing produces translatable circular mRNAs. RNA 21, 172–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, X. et al. A unified mechanism for intron and exon definition and back-splicing. Nature 573, 375–380 (2019). This study provides cryo-electron microscopy structures of the yeast spliceosomal E complex and demonstrates back-splicing is catalysed by the spliceosome.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).

    CAS  PubMed  Google Scholar 

  48. Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Liang, D. et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol. Cell 68, 940–954 e943 (2017). This study suggests differential use of spliceosome components between back-splicing and canonical splicing.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaphiropoulos, P. G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc. Natl Acad. Sci. USA 93, 6536–6541 (1996).

    CAS  PubMed  Google Scholar 

  51. Kelly, S., Greenman, C., Cook, P. R. & Papantonis, A. Exon skipping is correlated with exon circularization. J. Mol. Biol. 427, 2414–2417 (2015).

    CAS  PubMed  Google Scholar 

  52. Chen, L. L. & Yang, L. Regulation of circRNA biogenesis. RNA Biol. 12, 381–388 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Jeck, W. R. & Sharpless, N. E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 32, 453–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao, Y. et al. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 7, 12060 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ottesen, E. W., Luo, D., Seo, J., Singh, N. N. & Singh, R. N. Human survival motor neuron genes generate a vast repertoire of circular RNAs. Nucleic Acids Res. 47, 2884–2905 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Braunschweig, U., Gueroussov, S., Plocik, A. M., Graveley, B. R. & Blencowe, B. J. Dynamic integration of splicing within gene regulatory pathways. Cell 152, 1252–1269 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28, 2663–2676 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Dubin, R. A., Kazmi, M. A. & Ostrer, H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 167, 245–248 (1995).

    CAS  PubMed  Google Scholar 

  59. Kramer, M. C. et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168–2182 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Guarnerio, J. et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165, 289–302 (2016).

    CAS  PubMed  Google Scholar 

  61. Wang, M., Hou, J., Muller-McNicoll, M., Chen, W. & Schuman, E. M. Long and repeat-rich intronic sequences favor circular RNA formation under conditions of reduced spliceosome activity. iScience 20, 237–247 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Khan, M. A. et al. RBM20 regulates circular RNA production from the titin gene. Circ. Res. 119, 996–1003 (2016).

    CAS  PubMed  Google Scholar 

  63. Fei, T. et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl Acad. Sci. USA 114, E5207–E5215 (2017).

    CAS  PubMed  Google Scholar 

  64. Patino, C., Haenni, A. L. & Urcuqui-Inchima, S. NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie 108, 20–24 (2015).

    CAS  PubMed  Google Scholar 

  65. Li, X. et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell 67, 214–227 (2017).

    CAS  PubMed  Google Scholar 

  66. Aktas, T. et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119 (2017).

    CAS  PubMed  Google Scholar 

  67. Braunschweig, U. et al. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24, 1774–1786 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    PubMed  Google Scholar 

  69. Conn, V. M. et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 3, 17053 (2017).

    CAS  PubMed  Google Scholar 

  70. Huang, C., Liang, D., Tatomer, D. C. & Wilusz, J. E. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32, 639–644 (2018). This study reveals that circRNA nuclear export occurs in a length-dependent manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gatfield, D. et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr. Biol. 11, 1716–1721 (2001).

    CAS  PubMed  Google Scholar 

  72. Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880 e821 (2019). This study shows that circRNAs can form unique structures and regulate PKR activity, and reports that circRNA misregulation is related to an autoimmune disease.

    CAS  PubMed  Google Scholar 

  73. Zhou, C. et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20, 2262–2276 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6, e31311 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    CAS  PubMed  Google Scholar 

  76. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013). This study functionally characterizes naturally expressed circRNAs by their acting as miRNA sponges.

    CAS  PubMed  Google Scholar 

  79. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017). This study generates a circRNA-knockout mouse model that can exhibit neuronal phenotypes.

    PubMed  Google Scholar 

  80. Han, Y. et al. Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science 343, 1244–1248 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Park, O. H. et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol. Cell 74, 494–507 (2019).

    CAS  PubMed  Google Scholar 

  82. Jarrous, N. Roles of RNase P and its subunits. Trends Genet. 33, 594–603 (2017).

    CAS  PubMed  Google Scholar 

  83. Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell 78, 70–84 (2020).

    CAS  PubMed  Google Scholar 

  84. Kim, Y. K. & Maquat, L. E. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA 25, 407–422 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dong, R. et al. CircRNA-derived pseudogenes. Cell Res. 26, 747–750 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Guarnerio, J. et al. Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Res. 29, 628–640 (2019).

    CAS  PubMed  Google Scholar 

  87. Liu, Y. et al. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol. 18, e3000582 (2020).

    PubMed  PubMed Central  Google Scholar 

  88. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang, R. et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124–2HG. Autophagy 13, 1722–1741 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng, Q. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Stoll, L. et al. Circular RNAs as novel regulators of beta-cell functions in normal and disease conditions. Mol. Metab. 9, 69–83 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kristensen, L. S., Okholm, T. L. H., Veno, M. T. & Kjems, J. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 15, 280–291 (2018).

    PubMed  Google Scholar 

  96. Yu, C. Y. et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat. Commun. 8, 1149 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Li, Q. et al. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 Axis under hypoxic stress. Hepatology 70, 1298–1316 (2019).

    CAS  PubMed  Google Scholar 

  98. Hu, Z. Q. et al. Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology https://doi.org/10.1002/hep.31068 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25, 981–984 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Du, W. W. et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Heart J. 38, 1402–1412 (2017).

    CAS  PubMed  Google Scholar 

  102. Zeng, Y. et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7, 3842–3855 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, S. et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139, 2857–2876 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Holdt, L. M. et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 7, 12429 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Abdelmohsen, K. et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Grammatikakis, I., Abdelmohsen, K. & Gorospe, M. Posttranslational control of HuR function. Wiley Interdiscip. Rev. RNA 8, e1372 (2017).

    Google Scholar 

  108. Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015).

    CAS  PubMed  Google Scholar 

  109. Armakola, M. et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat. Genet. 44, 1302–1309 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, S. Y. et al. Inborn errors of RNA lariat metabolism in humans with brainstem viral infection. Cell 172, 952–965 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Harashima, A., Guettouche, T. & Barber, G. N. Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense. Genes Dev. 24, 2640–2653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Isken, O. et al. Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. EMBO J. 22, 5655–5665 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2’-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Moldovan, L. I. et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med. Genomics 12, 174 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhu, P. et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3. Nat. Immunol. 20, 183–194 (2019).

    CAS  PubMed  Google Scholar 

  116. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238 e225 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520 e504 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109 (2019).

    CAS  PubMed  Google Scholar 

  119. Toptan, T. et al. Circular DNA tumor viruses make circular RNAs. Proc. Natl Acad. Sci. USA 115, E8737–E8745 (2018).

    CAS  PubMed  Google Scholar 

  120. Huang, J. T. et al. Identification of virus-encoded circular RNA. Virology 529, 144–151 (2019).

    CAS  PubMed  Google Scholar 

  121. Tagawa, T. et al. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc. Natl Acad. Sci. USA 115, 12805–12810 (2018).

    CAS  PubMed  Google Scholar 

  122. Ungerleider, N. et al. The Epstein Barr virus circRNAome. PLoS Pathog. 14, e1007206 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Zhao, J. et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun. 10, 2300 (2019).

    PubMed  PubMed Central  Google Scholar 

  124. Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 (2019).

    CAS  PubMed  Google Scholar 

  125. Bachmayr-Heyda, A. et al. Correlation of circular RNA abundance with proliferation — exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 5, 8057 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Panda, A. C. et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res. 45, 4021–4035 (2017).

    CAS  PubMed  Google Scholar 

  127. Yu, J. et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J. Hepatol. 68, 1214–1227 (2018).

    CAS  PubMed  Google Scholar 

  128. Yang, W., Du, W. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35, 3919–3931 (2016).

    CAS  PubMed  Google Scholar 

  129. Lukiw, W. J. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front. Genet. 4, 307 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. Dube, U. et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat. Neurosci. 22, 1903–1912 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, Y. J. et al. Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism. Genome Res. 30, 375–391 (2020).

    PubMed  PubMed Central  Google Scholar 

  132. Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667–675 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Jost, I. et al. Functional sequestration of microRNA-122 from hepatitis C virus by circular RNA sponges. RNA Biol. 15, 1032–1039 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Memczak, S., Papavasileiou, P., Peters, O. & Rajewsky, N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10, e0141214 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Li, H. et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin. Chim. Acta 480, 17–25 (2018).

    CAS  PubMed  Google Scholar 

  136. Bahn, J. H. et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem. 61, 221–230 (2015).

    CAS  PubMed  Google Scholar 

  137. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 e614 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, L. Z. et al. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol. Cell 76, 981–997 e987 (2019).

    CAS  PubMed  Google Scholar 

  141. Zhang, Y., Yang, L. & Chen, L. L. Characterization of circular RNAs. Methods Mol. Biol. 1402, 215–227 (2016).

    CAS  PubMed  Google Scholar 

  142. Xiao, M. S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3’ ends. Nucleic Acids Res. 47, 8755–8769 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ma, X. K. et al. CIRCexplorer3: a CLEAR pipeline for direct comparison of circular and linear RNA expression. Genomics Proteomics Bioinformatics 17, 511–521 (2019).

    PubMed  Google Scholar 

  144. Jakobi, T., Uvarovskii, A. & Dieterich, C. Circtools-a one-stop software solution for circular RNA research. Bioinformatics 35, 2326–2328 (2019).

    CAS  PubMed  Google Scholar 

  145. Chuang, T. J. et al. Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells. Nucleic Acids Res. 46, 3671–3691 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Dahl, M. et al. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab. Invest. 98, 1657–1669 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, T. et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J. Mol. Med. 96, 85–96 (2018).

    CAS  PubMed  Google Scholar 

  148. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66, 22–37 e29 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Pamudurti, N. R. et al. Translation of circRNAs. Mol. Cell 66, 9–21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Schneider, T. et al. CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs. Sci. Rep. 6, 31313 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, K. et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J. 37, 2602–2611 (2016).

    CAS  PubMed  Google Scholar 

  153. Chen, C. Y. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415–417 (1995).

    CAS  PubMed  Google Scholar 

  154. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260 (2019).

    PubMed  Google Scholar 

  156. Fan, X. et al. Pervasive translation of circular RNAs driven by short IRES-like elements. bioRxiv https://doi.org/10.1101/473207 (2019).

    Article  Google Scholar 

  157. Tang, C. et al. m6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 30, 211–228 (2020).

    CAS  PubMed  Google Scholar 

  158. Mankan, A. K. et al. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J. 33, 2937–2946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author apologizes to colleagues whose work is not discussed here owing to space limitations. The author thanks L. Yang, C.-X. Liu, X. Li and S.-K. Guo for discussions. This work was supported by grants from the Chinese Academy of Sciences (XDB19020104), the National Natural Science Foundation of China (91940303, 31725009, 31821004, 31861143025) and the HHMI International Research Scholar Program (55008728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ling Chen.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Albrecht Bindereif, Howard Chang and Jeremy Wilusz for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Box 1

Glossary

RNase R

A 3′-to-5′ exonuclease that preferentially digests linear RNAs, thereby allowing the enrichment of circular RNAs.

Internal ribosome entry site

(IRES). A structural RNA element that makes possible the initiation of cap-independent translation.

Spliceosomal E complex

Formation of this complex initiates the splicing cycle and is crucial for the accurate definition of introns and exons by the splicing machinery.

Cassette exons

Exons present in one RNA transcript but absent in an isoform of the transcript.

Alu elements

Primate-specific retrotransposons that constitute almost 11% of the human genome.

Exon definition complexes

Protein complexes that initially recognize splice sites and direct prespliceosome assembly on exons. They further interact across long introns to form the catalytic spliceosome.

A-to-I editing

In higher eukaryotes, the predominant form of RNA modification, in which adenosine is modified to inosine within imperfect double-stranded RNAs.

Nonsense-mediated mRNA decay

A mechanism of selective degradation of mRNAs; a means of post-transcriptional gene regulation in mammals.

R-loops

Triple-stranded nucleic acid structures that form during transcription; they consist of a DNA–RNA hybrid and the single-stranded non-template DNA.

Group I introns

Large autocatalytic ribozymes that catalyse their own excision from mRNA, tRNA and ribosomal RNA precursors.

Pattern recognition receptor

Cellular protein that recognizes pathogenic molecules and confers protection against viral infection by eliciting innate immunity responses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21, 475–490 (2020). https://doi.org/10.1038/s41580-020-0243-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-0243-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing