Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An optical tweezer array of ultracold polyatomic molecules

Abstract

Polyatomic molecules have rich structural features that make them uniquely suited to applications in quantum information science1,2,3, quantum simulation4,5,6, ultracold chemistry7 and searches for physics beyond the standard model8,9,10. However, a key challenge is fully controlling both the internal quantum state and the motional degrees of freedom of the molecules. Here we demonstrate the creation of an optical tweezer array of individual polyatomic molecules, CaOH, with quantum control of their internal quantum state. The complex quantum structure of CaOH results in a non-trivial dependence of the molecules’ behaviour on the tweezer light wavelength. We control this interaction and directly and non-destructively image individual molecules in the tweezer array with a fidelity greater than 90%. The molecules are manipulated at the single internal quantum state level, thus demonstrating coherent state control in a tweezer array. The platform demonstrated here will enable a variety of experiments using individual polyatomic molecules with arbitrary spatial arrangement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An optical tweezer array of CaOH molecules.
Fig. 2: Wavelength dependence of CaOH trapping.
Fig. 3: Tweezer array imaging and characterization.
Fig. 4: Single-state control of CaOH in optical tweezers.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).

    Article  ADS  CAS  Google Scholar 

  2. Wei, Q., Kais, S., Friedrich, B. & Herschbach, D. Entanglement of polar symmetric top molecules as candidate qubits. J. Chem. Phys. 135, 154102 (2011).

    Article  ADS  PubMed  Google Scholar 

  3. Tesch, C. M. & de Vivie-Riedle, R. Quantum computation with vibrationally excited molecules. Phys. Rev. Lett. 89, 157901 (2002).

    Article  ADS  PubMed  Google Scholar 

  4. Wall, M. L., Maeda, K. & Carr, L. D. Simulating quantum magnets with symmetric top molecules. Ann. Phys. (Berlin) 525, 845–865 (2013).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Wall, M., Hazzard, K. & Rey, A. M. in From Atomic To Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (eds Malinovskaya, S. & Novikova, I.) 3–37 (World Scientific, 2015).

  6. Wall, M., Maeda, K. & Carr, L. D. Realizing unconventional quantum magnetism with symmetric top molecules. New J. Phys. 17, 025001 (2015).

    Article  ADS  Google Scholar 

  7. Heazlewood, B. R. & Softley, T. P. Towards chemistry at absolute zero. Nat. Rev. Chem. 5, 125–140 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    Article  ADS  PubMed  Google Scholar 

  9. Kozyryev, I., Lasner, Z. & Doyle, J. M. Enhanced sensitivity to ultralight bosonic dark matter in the spectra of the linear radical SrOH. Phys. Rev. A 103, 043313 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Hutzler, N. R. Polyatomic molecules as quantum sensors for fundamental physics. Quantum Sci. Technol. 5, 044011 (2020).

    Article  ADS  Google Scholar 

  11. Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

  12. Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011).

    Article  ADS  Google Scholar 

  13. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yelin, S., Kirby, K. & Côté, R. Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301 (2006).

    Article  ADS  Google Scholar 

  15. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).

    Article  ADS  CAS  Google Scholar 

  17. Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).

    CAS  Google Scholar 

  18. Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett. 125, 043401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Kondov, S. S. et al. Molecular lattice clock with long vibrational coherence. Nat. Phys. 15, 1118–1122 (2019).

    Article  CAS  Google Scholar 

  20. Norrgard, E. B. et al. Nuclear-spin dependent parity violation in optically trapped polyatomic molecules. Commun. Phys. 2, 1–6 (2019).

    Article  Google Scholar 

  21. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Barredo, D., Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article  CAS  Google Scholar 

  25. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  CAS  Google Scholar 

  26. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268–272 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    CAS  Google Scholar 

  33. Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Reynolds, L. A. et al. Direct measurements of collisional dynamics in cold atom triads. Phys. Rev. Lett. 124, 073401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).

    Article  ADS  Google Scholar 

  37. Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  39. Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  40. Bao, Y. et al. Raman sideband cooling of molecules in an optical tweezer array to the 3D motional ground state. Preprint at https://arxiv.org/abs/2309.08706 (2023).

  41. Lu, Y., Li, S. J., Holland, C. M. & Cheuk, L. W. Raman sideband cooling of molecules in an optical tweezer array. Nat. Phys. 20, 389–394 (2024).

  42. Augenbraun, B. L. et al. in Advances in Atomic, Molecular, and Optical Physics Vol. 72 (eds DiMauro, L. F., Perrin, H. & Yelin, S. F.) 89–182 (Academic, 2023).

  43. Anderegg, L. et al. Quantum control of trapped polyatomic molecules for eEDM searches. Science 382, 665–668 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  44. Takahashi, Y., Zhang, C., Jadbabaie, A. & Hutzler, N. R. Engineering field-insensitive molecular clock transitions for symmetry violation searches. Phys. Rev. Lett. 131, 183003 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Article  ADS  PubMed  Google Scholar 

  46. Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).

    Article  ADS  PubMed  Google Scholar 

  49. Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys. Rev. Lett. 118, 093201 (2017).

    Article  ADS  PubMed  Google Scholar 

  50. Hallas, C. et al. Optical trapping of a polyatomic molecule in an -type parity doublet state. Phys. Rev. Lett. 130, 153202 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Cheuk, L. W. et al. Λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Pereira, R. & Levy, D. H. Observation and spectroscopy of high-lying states of the CaOH radical: Evidence for a bent, covalent state. J. Chem. Phys. 105, 9733–9739 (1996).

    Article  ADS  CAS  Google Scholar 

  54. Vilas, N. B. et al. Blackbody thermalization and vibrational lifetimes of trapped polyatomic molecules. Phys. Rev. A 107, 062802 (2023).

    Article  ADS  CAS  Google Scholar 

  55. Holland, C. M., Lu, Y. & Cheuk, L. W. Bichromatic imaging of single molecules in an optical tweezer array. Phys. Rev. Lett. 131, 053202 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Tuchendler, C., Lance, A. M., Browaeys, A., Sortais, Y. R. P. & Grangier, P. Energy distribution and cooling of a single atom in an optical tweezer. Phys. Rev. A 78, 033425 (2008).

    Article  ADS  Google Scholar 

  57. Augustovičová, L. D. & Bohn, J. L. Ultracold collisions of polyatomic molecules: CaOH. New J. Phys. 21, 103022 (2019).

    Article  ADS  Google Scholar 

  58. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: Laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).

    CAS  Google Scholar 

  61. Anderegg, L. Ultracold Molecules in Optical Arrays: From Laser Cooling to Molecular Collisions. PhD thesis, Harvard Univ. (2019).

  62. Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J. Phys. 19, 022001 (2017).

    Article  ADS  Google Scholar 

  63. Zhang, C. et al. Accurate prediction and measurement of vibronic branching ratios for laser cooling linear polyatomic molecules. J. Chem. Phys. 155, 091101 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Yu, Y. et al. Coherent optical creation of a single molecule. Phys. Rev. X 11, 031061 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Cheng for providing dynamic polarizability calculations. This work was supported by the AFOSR, NSF, and ARO. Support is also acknowledged from the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. P.R. acknowledges support from the NSF GRFP, and G.K.L. and L.A. acknowledge support from the HQI.

Author information

Authors and Affiliations

Authors

Contributions

N.B.V., P.R., C.H., G.K.L. and L.A. performed the experiment and analysed the data. J.M.D. directed the study. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Nathaniel B. Vilas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Imaging photon budget vs. tweezer wavelength.

Calculated (curves) and measured (points) number of imaging photons that can be scattered during molecule imaging in the tweezer array, as a function of the trapping wavelength. Calculations include the effect of vacuum loss, loss to vibrational dark states, and trap-wavelength-dependent excitation to lossy excited electronic levels. The solid blue curve accounts for excitation only to those states observed using AC Stark shift data, while the black, dashed curve additionally includes \({\widetilde{A}}^{2}{\Pi }_{1/2}(000)\leftrightarrow {\widetilde{D}}^{2}{\Sigma }^{+}(010)\) excitation predicted at 793.6 nm.

Source Data

Extended Data Fig. 2 Determination of tweezer imaging fidelities.

a, Signal (orange) and background (purple) histogram data, hexp(n) and h0(n), for 7 ms tweezer images. The average tweezer loading probability in the signal histogram is p = 0.34. b, Misidentification error rates ϵ01(θ) and ϵ10(θ) for 7 ms tweezer images, inferred from the experimental data as described in the text. c, Imaging fidelities f(p) for several average tweezer loading probabilities p, as described in the text.

Source Data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilas, N.B., Robichaud, P., Hallas, C. et al. An optical tweezer array of ultracold polyatomic molecules. Nature 628, 282–286 (2024). https://doi.org/10.1038/s41586-024-07199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07199-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing