Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum science with optical tweezer arrays of ultracold atoms and molecules

Abstract

Single atoms and molecules can be trapped in tightly focused beams of light that form ‘optical tweezers’, affording exquisite capabilities for the control and detection of individual particles. This approach has progressed to creating tweezer arrays holding hundreds of atoms, resulting in a platform for controlling large many-particle quantum systems. Here we review this new approach to microscopic control of scalable atomic and molecular neutral quantum systems, its future prospects, and applications in quantum information processing, quantum simulation and metrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neutral atoms in optical tweezers.
Fig. 2: Entropy mitigation by rearrangement and ground-state cooling.
Fig. 3: Two-qubit gates with Rydberg atoms.
Fig. 4: Experiments with alkaline-earth atoms in tweezers.
Fig. 5: Two approaches to fully controlled single molecules in tweezers.

Similar content being viewed by others

References

  1. Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article  ADS  Google Scholar 

  2. Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010).

    Article  ADS  Google Scholar 

  3. Isenhower, L. et al. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010).

    Article  ADS  Google Scholar 

  4. Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Xia, T. et al. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett. 114, 100503 (2015).

    Article  ADS  Google Scholar 

  6. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  Google Scholar 

  7. Levine, H. et al. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121, 123603 (2018).

    Article  ADS  Google Scholar 

  8. Liu, L. R. et al. Building one molecule from a reservoir of two atoms. Science 360, 900–903 (2018).

    Article  ADS  Google Scholar 

  9. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article  ADS  Google Scholar 

  10. Cairncross, W. B. et al. Assembly of a rovibrational ground state molecule in an optical tweezer. Phys. Rev. Lett. 126, 123402 (2021).

    Article  ADS  Google Scholar 

  11. Miroshnychenko, Y. et al. An atom-sorting machine. Nature 442, 151 (2006).

    Article  ADS  Google Scholar 

  12. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary 2D atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  Google Scholar 

  13. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  Google Scholar 

  14. Robens, C. et al. Low-entropy states of neutral atoms in polarization-synthesized optical lattices. Phys. Rev. Lett. 118, 065302 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. Kumar, A., Wu, T.-Y., Giraldo, F. & Weiss, D. S. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon. Nature 561, 83–87 (2018).

    Article  ADS  Google Scholar 

  16. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  17. Darquié, B. et al. Controlled single-photon emission from a single trapped two-level atom. Science 309, 454–456 (2005).

    Article  ADS  Google Scholar 

  18. Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

    Article  ADS  Google Scholar 

  19. Saffman, M., Walker, T. G. & Molmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  20. Lienhard, V. et al. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions. Phys. Rev. X 8, 021070 (2018).

    Google Scholar 

  21. Keesling, A. et al. Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature 568, 207–211 (2019).

    Article  ADS  Google Scholar 

  22. Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  23. de Léséleuc, S. et al. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  Google Scholar 

  25. Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    Article  ADS  Google Scholar 

  26. Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    Google Scholar 

  27. Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    Article  ADS  Google Scholar 

  28. Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    Article  ADS  Google Scholar 

  29. Kim, M. E., Chang, T.-H., Fields, B. M., Chen, C.-A. & Hung, C.-L. Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices. Nat. Commun. 10, 1647 (2019).

    Article  ADS  Google Scholar 

  30. Nayak, K. P., Wang, J. & Keloth, J. Real-time observation of single atoms trapped and interfaced to a nanofiber cavity. Phys. Rev. Lett. 123, 213602 (2019).

    Article  ADS  Google Scholar 

  31. Béguin, J.-B. et al. Advanced apparatus for the integration of nanophotonics and cold atoms. Optica 7, 1–2 (2020).

    Article  ADS  Google Scholar 

  32. Xu, P. et al. Interaction-induced decay of a heteronuclear two-atom system. Nat. Commun. 6, 7803 (2015).

    Article  ADS  Google Scholar 

  33. Reynolds, L. A. et al. Direct measurements of collisional dynamics in cold atom triads. Phys. Rev. Lett. 124, 073401 (2020).

    Article  ADS  Google Scholar 

  34. Hood, J. D. et al. Multichannel interactions of two atoms in an optical tweezer. Phys. Rev. Res. 2, 023108 (2020).

    Article  Google Scholar 

  35. Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state caf molecules. Phys. Rev. Lett. 125, 043401 (2020).

    Article  ADS  Google Scholar 

  36. Schlosser, N., Reymond, G. & Grangier, P. Collisional blockade in microscopic optical dipole traps. Phys. Rev. Lett. 89, 023005 (2002).

    Article  ADS  Google Scholar 

  37. Jones, M. P. A. et al. Fast quantum state control of a single trapped neutral atom. Phys. Rev. A 75, 040301 (2007).

    Article  ADS  Google Scholar 

  38. Beugnon, J. et al. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nat. Phys. 3, 696–699 (2007).

    Article  Google Scholar 

  39. Kaufman, A. M. et al. Entangling two transportable neutral atoms via local spin exchange. Nature 527, 208–211 (2015).

    Article  ADS  Google Scholar 

  40. Weiss, D. S. et al. Another way to approach zero entropy for a finite system of atoms. Phys. Rev. A 70, 040302 (2004).

    Article  ADS  Google Scholar 

  41. Serwane, F. et al. Deterministic preparation of a tunable few-fermion system. Science 332, 336–338 (2011).

    Article  ADS  Google Scholar 

  42. Wenz, A. N. et al. From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457–460 (2013).

    Article  ADS  Google Scholar 

  43. Zürn, G. et al. Fermionization of two distinguishable fermions. Phys. Rev. Lett. 108, 075303 (2012).

    Article  ADS  Google Scholar 

  44. Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).

    Article  ADS  Google Scholar 

  45. Preiss, P. M. et al. High-contrast interference of ultracold fermions. Phys. Rev. Lett. 122, 143602 (2019).

    Article  ADS  Google Scholar 

  46. Bergschneider, A. et al. Experimental characterization of two-particle entanglement through position and momentum correlations. Nat. Phys. 15, 640–644 (2019).

    Article  Google Scholar 

  47. Becher, J. H. et al. Measurement of identical particle entanglement and the influence of antisymmetrization. Phys. Rev. Lett. 125, 180402 (2020).

    Article  ADS  Google Scholar 

  48. Bayha, L. et al. Observing the emergence of a quantum phase transition shell by shell. Nature 587, 583–587 (2020).

    Article  ADS  Google Scholar 

  49. Holten, M. et al. Observation of Pauli crystals. Phys. Rev. Lett. 126, 020401 (2021).

    Article  ADS  Google Scholar 

  50. Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2, 041014 (2012).

    Google Scholar 

  51. Thompson, J. D., Tiecke, T. G., Zibrov, A. S., Vuletić, V. & Lukin, M. D. Coherence and Raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett. 110, 133001 (2013).

    Article  ADS  Google Scholar 

  52. Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989).

    Article  ADS  Google Scholar 

  53. Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

    Article  ADS  Google Scholar 

  54. Zhang, J. T. et al. Forming a single molecule by magnetoassociation in an optical tweezer. Phys. Rev. Lett. 124, 253401 (2020).

    Article  ADS  Google Scholar 

  55. He, X. et al. Coherently forming a single molecule in an optical trap. Science 370, 331–335 (2020).

    Article  ADS  Google Scholar 

  56. Barredo, D., Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).

    Article  ADS  Google Scholar 

  57. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  ADS  Google Scholar 

  58. Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article  ADS  Google Scholar 

  59. Grünzweig, T., Hilliard, A., McGovern, M. & Andersen, M. Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys. 6, 951–954 (2010).

    Article  Google Scholar 

  60. Lester, B. J., Luick, N., Kaufman, A. M., Reynolds, C. M. & Regal, C. A. Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett. 115, 073003 (2015).

    Article  ADS  Google Scholar 

  61. Brown, M. O., Thiele, T., Kiehl, C., Hsu, T.-W. & Regal, C. A. Gray-molasses optical-tweezer loading: controlling collisions for scaling atom-array assembly. Phys. Rev. X 9, 011057 (2019).

    Google Scholar 

  62. Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

    Article  ADS  Google Scholar 

  63. Brennen, G. K., Deutsch, I. H. & Jessen, P. S. Entangling dipole–dipole interactions for quantum logic with neutral atoms. Phys. Rev. A 61, 062309 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  64. Urban, E. et al. Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009).

    Article  Google Scholar 

  65. Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115–118 (2009).

    Article  Google Scholar 

  66. Jau, Y. Y., Hankin, A. M., Keating, T., Deutsch, I. H. & Biedermann, G. W. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys. 12, 71–74 (2016).

    Article  Google Scholar 

  67. de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Analysis of imperfections in the coherent optical excitation of single atoms to rydberg states. Phys. Rev. A 97, 053803 (2018).

    Article  ADS  Google Scholar 

  68. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    Article  ADS  Google Scholar 

  69. Graham, T. M. et al. Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett. 123, 230501 (2019).

    Article  ADS  Google Scholar 

  70. Saffman, M. & Mølmer, K. Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009).

    Article  ADS  Google Scholar 

  71. de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. Optical control of the resonant dipole–dipole interaction between Rydberg atoms. Phys. Rev. Lett. 119, 053202 (2017).

    Article  ADS  Google Scholar 

  72. Pichler, H., Wang, S., Zhou, L., Choi, S. & Lukin, M. Quantum optimization for maximum independent set using Rydberg atom arrays. Preprint at https://arxiv.org/abs/1808.10816 (2018).

  73. Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).

    Google Scholar 

  74. Wild, D. S., Sels, D., Pichler, H., Zanoci, C. & Lukin, M. Quantum sampling algorithms for near-term devices. Phys. Rev. Lett. 127, 100504 (2020).

    Article  Google Scholar 

  75. Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B 49, 202001 (2016).

    Article  ADS  Google Scholar 

  76. Cortiñas, R. G. et al. Laser trapping of circular Rydberg atoms. Phys. Rev. Lett. 124, 123201 (2020).

    Article  ADS  Google Scholar 

  77. Beterov, I. I. & Saffman, M. Rydberg blockade, förster resonances, and quantum state measurements with different atomic species. Phys. Rev. A 92, 042710 (2015).

    Article  ADS  Google Scholar 

  78. Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).

    Google Scholar 

  79. Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    Google Scholar 

  80. Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J. D. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).

    Article  ADS  Google Scholar 

  81. Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).

    Article  ADS  Google Scholar 

  82. Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).

    Article  Google Scholar 

  83. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  84. Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    Article  ADS  Google Scholar 

  85. McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article  ADS  Google Scholar 

  86. Hume, D. B. & Leibrandt, D. R. Probing beyond the laser coherence time in optical clock comparisons. Phys. Rev. A 93, 032138 (2016).

    Article  ADS  Google Scholar 

  87. Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    Article  ADS  Google Scholar 

  88. Clements, E. R. et al. Lifetime-limited interrogation of two independent 27Al+ clocks using correlation spectroscopy. Phys. Rev. Lett. 125, 243602 (2020).

    Article  ADS  Google Scholar 

  89. Diddams, S. A. et al. An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001).

    Article  ADS  Google Scholar 

  90. Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010).

    Article  ADS  Google Scholar 

  91. Chou, C. W., Hume, D. B., Thorpe, M. J., Wineland, D. J. & Rosenband, T. Quantum coherence between two atoms beyond Q = 1015. Phys. Rev. Lett. 106, 160801 (2011).

    Article  ADS  Google Scholar 

  92. Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    Article  ADS  Google Scholar 

  93. Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    Article  ADS  Google Scholar 

  94. Marti, G. E. et al. Imaging optical frequencies with 100μHz precision and 1.1μm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    Article  ADS  Google Scholar 

  95. Mukherjee, R., Millen, J., Nath, R., Jones, M. P. A. & Pohl, T. Many-body physics with alkaline-earth Rydberg lattices. J. Phys. B 44, 184010 (2011).

    Article  ADS  Google Scholar 

  96. Topcu, T. & Derevianko, A. Divalent Rydberg atoms in optical lattices: intensity landscape and magic trapping. Phys. Rev. A 89, 023411 (2014).

    Article  ADS  Google Scholar 

  97. Topcu, T. & Derevianko, A. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices. J. Phys. B 49, 144004 (2016).

    Article  ADS  Google Scholar 

  98. Robicheaux, F., Booth, D. W. & Saffman, M. Theory of long-range interactions for Rydberg states attached to hyperfine-split cores. Phys. Rev. A 97, 022508 (2018).

    Article  ADS  Google Scholar 

  99. Wilson, J. et al. Trapped arrays of alkaline earth Rydberg atoms in optical tweezers. Preprint at https://arxiv.org/abs/1912.08754 (2019).

  100. Gil, L. I. R., Mukherjee, R., Bridge, E. M., Jones, M. P. A. & Pohl, T. Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014).

    Article  ADS  Google Scholar 

  101. Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123, 260505 (2019).

    Article  ADS  Google Scholar 

  102. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article  ADS  Google Scholar 

  103. Cappellini, G. et al. Direct observation of coherent interorbital spin-exchange dynamics. Phys. Rev. Lett. 113, 120402 (2014).

    Article  ADS  Google Scholar 

  104. Pagano, G., Scazza, F. & Foss-Feig, M. Fast and scalable quantum information processing with two-electron atoms in optical tweezer arrays. Adv. Quantum Technol. 2, 1800067 (2019).

    Article  Google Scholar 

  105. Andreev, V. et al. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article  ADS  Google Scholar 

  106. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  Google Scholar 

  107. Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article  Google Scholar 

  108. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article  ADS  Google Scholar 

  109. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article  ADS  Google Scholar 

  110. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article  Google Scholar 

  111. Hudson, E. R. & Campbell, W. C. Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A 98, 040302 (2018).

    Article  ADS  Google Scholar 

  112. Hughes, M. et al. Robust entangling gate for polar molecules using magnetic and microwave fields. Phys. Rev. A 101, 062308 (2020).

    Article  ADS  Google Scholar 

  113. Danzl, J. G. et al. Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008).

    Article  ADS  Google Scholar 

  114. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  Google Scholar 

  115. Lang, F., Winkler, K., Strauss, C., Grimm, R. & Denschlag, J. H. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).

    Article  ADS  Google Scholar 

  116. Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    Article  ADS  Google Scholar 

  117. Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).

    Article  ADS  Google Scholar 

  118. Chou, C.-W. et al. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 545, 203–207 (2017).

    Article  ADS  Google Scholar 

  119. De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  Google Scholar 

  120. Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372–375 (2017).

    Article  ADS  Google Scholar 

  121. Gregory, P. D., Blackmore, J. A., Bromley, S. L., Hutson, J. M. & Cornish, S. L. Robust storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149–1153 (2021).

    Article  Google Scholar 

  122. Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    Article  ADS  Google Scholar 

  123. Caldwell, L. et al. Long rotational coherence times of molecules in a magnetic trap. Phys. Rev. Lett. 124, 063001 (2020).

    Article  ADS  Google Scholar 

  124. Kondov, S. S. et al. Molecular lattice clock with long vibrational coherence. Nat. Phys. 15, 1118–1122 (2019).

    Article  Google Scholar 

  125. Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Preprint at https://arxiv.org/abs/2105.15199 (2021).

  126. Di Rosa, M. D. Laser-cooling molecules—concept, candidates, and supporting hyperfine-resolved measurements of rotational lines in the A–X(0,0) band of CaH. Eur. Phys. J. D 31, 395–402 (2004).

    Article  ADS  Google Scholar 

  127. Stuhl, B. K., Sawyer, B. C., Wang, D. & Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008).

    Article  ADS  Google Scholar 

  128. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  ADS  Google Scholar 

  129. Truppe, S. et al. Molecules cooled below the doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Article  Google Scholar 

  130. Cheuk, L. W. et al. Λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).

    Article  ADS  Google Scholar 

  131. Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10, 021049 (2020).

    Google Scholar 

  132. Williams, H. J. et al. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120, 163201 (2018).

    Article  ADS  Google Scholar 

  133. Caldwell, L. & Tarbutt, M. R. Sideband cooling of molecules in optical traps. Phys. Rev. Res. 2, 013251 (2020).

    Article  Google Scholar 

  134. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    Article  ADS  Google Scholar 

  135. Wall, M. L., Maeda, K. & Carr, L. D. Realizing unconventional quantum magnetism with symmetric top molecules. New J. Phys. 17, 025001 (2015).

    Article  ADS  Google Scholar 

  136. Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).

    Article  ADS  Google Scholar 

  137. Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    Article  ADS  Google Scholar 

  138. Liu, L. R. et al. Molecular assembly of ground-state cooled single atoms. Phys. Rev. X 9, 021039 (2019).

    Google Scholar 

  139. Wang, K. et al. Preparation of a heteronuclear two-atom system in the three-dimensional ground state in an optical tweezer. Phys. Rev. A 100, 063429 (2019).

    Article  ADS  Google Scholar 

  140. Hutzler, N. R., Liu, L. R., Yu, Y. & Ni, K.-K. Eliminating light shifts for single atom trapping. New J. Phys. 19, 023007 (2017).

    Article  ADS  Google Scholar 

  141. Yu, Y. et al. Motional-ground-state cooling outside the lamb-dicke regime. Phys. Rev. A 97, 063423 (2018).

    Article  ADS  Google Scholar 

  142. Yu, Y. et al. Coherent optical creation of a single molecule. Preprint at https://arxiv.org/abs/2012.09043 (2020).

  143. Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    Article  ADS  Google Scholar 

  144. Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    Article  ADS  Google Scholar 

  145. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, abg9502 (2021).

    Article  Google Scholar 

  146. Sundar, B., Gadway, B. & Hazzard, K. R. A. Synthetic dimensions in ultracold polar molecules. Sci. Rep. 8, 3422 (2018).

    Article  ADS  Google Scholar 

  147. Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405–410 (2018).

    Article  Google Scholar 

  148. Sompet, P., Carpentier, A. V., Fung, Y. H., McGovern, M. & Andersen, M. F. Dynamics of two atoms undergoing light-assisted collisions in an optical microtrap. Phys. Rev. A 88, 051401 (2013).

    Article  ADS  Google Scholar 

  149. Vuletić, V., Chin, C., Kerman, A. J. & Chu, S. Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett. 81, 5768–5771 (1998).

    Article  ADS  Google Scholar 

  150. Han, D.-J. et al. 3D Raman sideband cooling of cesium atoms at high density. Phys. Rev. Lett. 85, 724–727 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Cairncross for assisting with the preparation of Fig. 5, and N. Schine and L. Liu for critical reading of the manuscript. A.M.K. acknowledges support from NIST. K.-K.N. acknowledges support from the AROSR (FA9550-19-1-0089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam M. Kaufman or Kang-Kuen Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufman, A.M., Ni, KK. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021). https://doi.org/10.1038/s41567-021-01357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01357-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing