Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Raman sideband cooling of molecules in an optical tweezer array

Abstract

Ultracold molecules have been proposed as a candidate platform for quantum science and precision measurement because of their rich internal structures and interactions. Direct laser-cooling promises to be a rapid and efficient way to bring molecules to ultracold temperatures. However, for trapped molecules, laser-cooling to the quantum motional ground state remains an outstanding challenge. A technique capable of reaching the motional ground state is Raman sideband cooling, first demonstrated in trapped ions and atoms. Here we demonstrate Raman sideband cooling of CaF molecules trapped in an optical tweezer array. Our protocol does not rely on high magnetic fields and preserves the purity of molecular internal states. We measure a high ground-state fraction and achieve low motional entropy per particle. The low temperatures we obtain could enable longer coherence times and higher-fidelity molecular qubit gates, desirable for quantum information processing and quantum simulation. With further improvements, Raman sideband cooling will also provide a route to quantum degeneracy of large molecular samples, which could be extendable to polyatomic molecular species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Raman sideband cooling scheme.
Fig. 2: Raman linewidths and optical pumping characterization.
Fig. 3: Raman sideband spectra at θ = 0° and adiabatic trap lowering curves.
Fig. 4: Raman thermometry.

Similar content being viewed by others

Data availability

Data for figures in the Supplementary Information are available from Dryad54. Additional experimental data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code used in this manuscript is available from the corresponding author upon reasonable request.

References

  1. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    ADS  CAS  PubMed  Google Scholar 

  2. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    ADS  Google Scholar 

  3. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  4. Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).

    ADS  Google Scholar 

  5. De Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).

    Google Scholar 

  6. Liu, Y. et al. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature 593, 379–384 (2021).

    ADS  CAS  PubMed  Google Scholar 

  7. De Marco, L. et al. A degenerate fermi gas of polar molecules. Science 363, 853–856 (2019).

    ADS  PubMed  Google Scholar 

  8. Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    ADS  CAS  PubMed  Google Scholar 

  10. Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    CAS  Google Scholar 

  11. Anderegg, L. et al. Radio Frequency Magneto-Optical Trapping of CaF with High Density. Phys. Rev. Lett. 119, 103201 (2017).

    ADS  PubMed  Google Scholar 

  12. Collopy, A. L. et al. 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).

    ADS  CAS  PubMed  Google Scholar 

  13. Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    ADS  CAS  PubMed  Google Scholar 

  14. Cheuk, L. W. et al. Λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).

    ADS  CAS  PubMed  Google Scholar 

  15. Caldwell, L. et al. Deep laser cooling and efficient magnetic compression of molecules. Phys. Rev. Lett. 123, 033202 (2019).

    ADS  CAS  PubMed  Google Scholar 

  16. Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of yo molecules at μk temperatures. Phys. Rev. X 10, 021049 (2020).

    CAS  Google Scholar 

  17. Langin, T. K., Jorapur, V., Zhu, Y., Wang, Q. & DeMille, D. Polarization enhanced deep optical dipole trapping of λ-cooled polar molecules. Phys. Rev. Lett. 127, 163201 (2021).

    ADS  CAS  PubMed  Google Scholar 

  18. Wu, Y., Burau, J. J., Mehling, K., Ye, J. & Ding, S. High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett. 127, 263201 (2021).

    ADS  CAS  PubMed  Google Scholar 

  19. Hallas, C. et al. Optical trapping of a polyatomic molecule in an -type parity doublet state. Phys. Rev. Lett. 130, 153202 (2023).

    ADS  CAS  PubMed  Google Scholar 

  20. Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).

    CAS  Google Scholar 

  21. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    ADS  CAS  PubMed  Google Scholar 

  22. Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  23. Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  24. Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    ADS  CAS  PubMed  Google Scholar 

  25. Heinzen, D. J. & Wineland, D. J. Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. Phys. Rev. A 42, 2977–2994 (1990).

    ADS  CAS  PubMed  Google Scholar 

  26. Monroe, C. et al. Resolved-sideband raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

    ADS  CAS  PubMed  Google Scholar 

  27. Hamann, S. E. et al. Resolved-sideband raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).

    ADS  CAS  Google Scholar 

  28. Kerman, A. J., Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000).

    ADS  CAS  PubMed  Google Scholar 

  29. Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2, 041014 (2012).

    CAS  Google Scholar 

  30. Thompson, J. D., Tiecke, T. G., Zibrov, A. S., Vuletić, V. & Lukin, M. D. Coherence and raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett. 110, 133001 (2013).

    ADS  CAS  PubMed  Google Scholar 

  31. Cheuk, L. W. et al. Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).

    ADS  PubMed  Google Scholar 

  32. Parsons, M. F. et al. Site-resolved imaging of fermionic 6Li in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).

    ADS  PubMed  Google Scholar 

  33. He, X. et al. Coherently forming a single molecule in an optical trap. Science 370, 331–335 (2020).

    ADS  CAS  PubMed  Google Scholar 

  34. Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).

    ADS  Google Scholar 

  35. Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).

    ADS  CAS  PubMed  Google Scholar 

  36. Hu, J. et al. Creation of a bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017).

    ADS  CAS  PubMed  Google Scholar 

  37. Urvoy, A., Vendeiro, Z., Ramette, J., Adiyatullin, A. & Vuletić, V. Direct laser cooling to Bose–Einstein condensation in a dipole trap. Phys. Rev. Lett. 122, 203202 (2019).

    ADS  CAS  PubMed  Google Scholar 

  38. Caldwell, L. & Tarbutt, M. R. Sideband cooling of molecules in optical traps. Phys. Rev. Res. 2, 013251 (2020).

    CAS  Google Scholar 

  39. Holland, C. M., Lu, Y. & Cheuk, L. W. Bichromatic imaging of single molecules in an optical tweezer array. Phys. Rev. Lett. 131, 053202 (2023).

    ADS  CAS  PubMed  Google Scholar 

  40. Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    CAS  Google Scholar 

  41. Tuchendler, C., Lance, A. M., Browaeys, A., Sortais, Y. R. P. & Grangier, P. Energy distribution and cooling of a single atom in an optical tweezer. Phys. Rev. A 78, 033425 (2008).

    ADS  Google Scholar 

  42. Zhang, X. et al. Subrecoil clock-transition laser cooling enabling shallow optical lattice clocks. Phys. Rev. Lett. 129, 113202 (2022).

    ADS  CAS  PubMed  Google Scholar 

  43. Yu, Y. et al. Motional-ground-state cooling outside the Lamb–Dicke regime. Phys. Rev. A 97, 063423 (2018).

    ADS  CAS  Google Scholar 

  44. Spence, S., Brooks, R. V., Ruttley, D. K., Guttridge, A. & Cornish, S. L. Preparation of 87Rb and 133Cs in the motional ground state of a single optical tweezer. New J. Phys. 24, 103022 (2022).

    ADS  Google Scholar 

  45. Ketterle, W. & Van Druten, N. J. in Advances in Atomic, Molecular, and Optical Physics, Vol. 37 (eds Bederson, B. & Walther, H.) 181–236. (Elsevier, 1996).

  46. Li, J. R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021).

    CAS  Google Scholar 

  47. Bigagli, N. et al. Collisionally stable gas of bosonic dipolar ground-state molecules. Nat. Phys. 19, 1579–1584 (2023).

  48. Lin, J. et al. Microwave shielding of bosonic narb molecules. Phys. Rev. X 13, 031032 (2023).

    CAS  Google Scholar 

  49. Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    ADS  PubMed  Google Scholar 

  50. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    ADS  CAS  PubMed  Google Scholar 

  51. Bao, Y. et al. Raman sideband cooling of molecules in an optical tweezer array to the 3-D motional ground state. Preprint at https://doi.org/10.48550/arXiv.2309.08706 (2023).

  52. Hutzler, N. R., Lu, H. I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).

    CAS  PubMed  Google Scholar 

  53. Lu, Y., Holland, C. M. & Cheuk, L. W. Molecular laser cooling in a dynamically tunable repulsive optical trap. Phys. Rev. Lett. 128, 213201 (2022).

    ADS  CAS  PubMed  Google Scholar 

  54. Lu, Y., Li, S. J., Holland, C. M. & Cheuk, L. W. Data for: Raman sideband cooling of molecules in an optical tweezer array (dryad). Dryad https://doi.org/10.5061/dryad.tht76hf4g (2023).

Download references

Acknowledgements

We thank J. Thompson, W. Bakr and the Bakr group for fruitful discussions. This work is supported by the National Science Foundation (grant no. 2207518) and by the Sloan Research Foundation (grant no. FG-2022-19104). C.M.H. acknowledges support from a Joseph Taylor Graduate Student Fellowship. S.J.L. acknowledges support from a Princeton Quantum Initiative Graduate Student Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

L.W.C. conceived the study and supervised the experiment. Y.L., C.M.H. and S.J.L. performed the experiments and the data analysis. All authors contributed to the manuscript.

Corresponding author

Correspondence to Lawrence W. Cheuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Andreas Schindewolf, Hannah Williams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, discussion and Table 1.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, S.J., Holland, C.M. et al. Raman sideband cooling of molecules in an optical tweezer array. Nat. Phys. 20, 389–394 (2024). https://doi.org/10.1038/s41567-023-02346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02346-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing