Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interface design for all-solid-state lithium batteries

Subjects

Abstract

The operation of high-energy all-solid-state lithium-metal batteries at low stack pressure is challenging owing to the Li dendrite growth at the Li anodes and the high interfacial resistance at the cathodes1,2,3,4. Here we design a Mg16Bi84 interlayer at the Li/Li6PS5Cl interface to suppress the Li dendrite growth, and a F-rich interlayer on LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes to reduce the interfacial resistance. During Li plating–stripping cycles, Mg migrates from the Mg16Bi84 interlayer to the Li anode converting Mg16Bi84 into a multifunctional LiMgSx–Li3Bi–LiMg structure with the layers functioning as a solid electrolyte interphase, a porous Li3Bi sublayer and a solid binder (welding porous Li3Bi onto the Li anode), respectively. The Li3Bi sublayer with its high ionic/electronic conductivity ratio allows Li to deposit only on the Li anode surface and grow into the porous Li3Bi sublayer, which ameliorates pressure (stress) changes. The NMC811 with the F-rich interlayer converts into F-doped NMC811 cathodes owing to the electrochemical migration of the F anion into the NMC811 at a high potential of 4.3 V stabilizing the cathodes. The anode and cathode interlayer designs enable the NMC811/Li6PS5Cl/Li cell to achieve a capacity of 7.2 mAh cm−2 at 2.55 mA cm−2, and the LiNiO2/Li6PS5Cl/Li cell to achieve a capacity of 11.1 mAh cm−2 with a cell-level energy density of 310 Wh kg−1 at a low stack pressure of 2.5 MPa. The Mg16Bi84 anode interlayer and F-rich cathode interlayer provide a general solution for all-solid-state lithium-metal batteries to achieve high energy and fast charging capability at low stack pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design principle, characterization and modelling of in situ transformation of Li6PS5Cl/Mg16Bi84/Li to Li6PS5Cl/LiMgSx/Li3Bi/LiMg.
Fig. 2: Electrochemical performance of the Li/Mg16Bi84–Li6PS5Cl–Mg16Bi84/Li symmetric cell.
Fig. 3: Electrochemical performance of the Cl@NMC811/Li6PS5Cl–Mg16Bi84/Li full cell.
Fig. 4: Characterization and electrochemical performance of the F-doped NMC811 cathode in a full cell with a Mg16Bi84 interlayer.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within this article and its Supplementary Information. Additional data are available from the corresponding author upon reasonable request.

References

  1. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    Article  CAS  Google Scholar 

  3. Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ning, Z. et al. Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    Article  CAS  Google Scholar 

  6. Li, X. et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 4, 2480–2488 (2019).

    Article  CAS  Google Scholar 

  7. Inaoka, T. et al. Tin interlayer at the Li/Li3PS4 interface for improved Li stripping/plating performance. J. Phys. Chem. C 127, 10453–10458 (2023).

    Article  CAS  Google Scholar 

  8. Raj, V. et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050–1056 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kim, S. et al. High-power hybrid solid-state lithium–metal batteries enabled by preferred directional lithium growth mechanism. ACS Energy Lett. 8, 9–20 (2023).

  10. Sang, L. et al. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries. Chem. Mater. 30, 8747–8756 (2018).

    Article  ADS  CAS  Google Scholar 

  11. Sakuma, M., Suzuki, K., Hirayama, M. & Kanno, R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 285, 101–105 (2016).

    Article  CAS  Google Scholar 

  12. Han, S. Y. et al. Stress evolution during cycling of alloy-anode solid-state batteries. Joule 5, 2450–2465 (2021).

    Article  CAS  Google Scholar 

  13. Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Luo, S. et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, X. et al. Electrochemo‐mechanical effects on structural integrity of Ni‐rich cathodes with different microstructures in all solid‐state batteries. Adv. Energy Mater. 11, 2003583 (2021).

    Article  CAS  Google Scholar 

  16. Wan, H. et al. F and N rich solid electrolyte for stable all‐solid‐state battery. Adv. Funct. Mater. 32, 2110876 (2022).

  17. Wan, H. et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023).

    Article  ADS  CAS  Google Scholar 

  18. Okamoto, H. Li-Zn (lithium-zinc). J. Phase Equilibria Diffus. 33, 345–345 (2012).

    Article  CAS  Google Scholar 

  19. Pavlyuk, V., Sozanskyi, M., Dmytriv, G., Indris, S. & Ehrenberg, H. Amendment of the Li-Bi phase diagram crystal and electronic structure of Li2Bi. J. Phase Equilibria Diffus. 36, 544–553 (2015).

    Article  CAS  Google Scholar 

  20. Zhang, S. et al. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett. 6, 4118–4126 (2021).

    Article  CAS  Google Scholar 

  21. Kim, S. Y. & Li, J. Porous mixed ionic electronic conductor interlayers for solid-state batteries. Energy Mater. Adv. 2021, 1519569 (2021).

    Article  ADS  Google Scholar 

  22. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  ADS  CAS  Google Scholar 

  23. Jin, S. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).

    Article  PubMed  Google Scholar 

  24. Hallstedt, B. & Kim, O. Thermodynamic assessment of the Al-Li system. Int. J. Mat. Res. 98, 961–969 (2007).

    Article  CAS  Google Scholar 

  25. Ye, L. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zhou, L. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article  ADS  CAS  Google Scholar 

  27. Hu, F. et al. Construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 12, 12793–12800 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, B. et al. Stabilizing Li7P3S11/lithium metal anode interface by in-situ bifunctional composite layer. Chem. Eng. J. 429, 132411 (2022).

    Article  CAS  Google Scholar 

  29. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under award number DE-AC05-76RL01830, the Advanced Research Projects Agency for Energy under award number DE-AR0000781 and the National Science Foundation (award number 1805159).

Author information

Authors and Affiliations

Authors

Contributions

H.W. and C.W. conceived the idea for the project. H.W., W.Z. and X.H. prepared the materials and carried out electrochemical experiments. Z.W. conducted the simulations. W.Z. prepared the polymer electrolyte and the CCD test for the polymer electrolyte. X.H. prepared the oxide electrolyte and the CCD test for the oxide electrolyte. All authors discussed the results, analysed the data and drafted the manuscript.

Corresponding author

Correspondence to Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Xiang Chen and Yong Jiang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussions, Figs. 1–49, Tables 1–6 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Wang, Z., Zhang, W. et al. Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06653-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing