Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilization of layered lithium-rich manganese oxide for anion exchange membrane fuel cells and water electrolysers

An Author Correction to this article was published on 26 April 2024

This article has been updated

Abstract

The design of materials that efficiently catalyse the electrochemical reaction of molecular oxygen to hydroxide ions is key to the development of electrochemical devices. Here we demonstrate an approach to control the orbital hybridization of 3d and 4d/5d metals to tune the adsorption strength and stabilize the catalytic sites in the platinum-free catalysts Li2Mn1−xRuxO3. We show that in these materials, the stabilization of O 2p holes by changing the M–O covalency (M = 4d/5d metal) can help to mitigate structural instability. Operando X-ray absorption spectroscopy revealed that the Mn and Ru atoms are the active sites for the oxygen reduction reaction (ORR) and exhibit a high ORR activity with noteworthy stability compared with the Pt/C catalyst and outperform NiFe layered double hydroxides and RuO2 in the oxygen evolution reaction. Notably, Li2Mn0.85Ru0.15O3 shows a high power density of 1.2 W cm−2 and current density of 1.2 A cm−2 at 1.9 V in the anion exchange membrane fuel cell and water electrolyser, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical characterization of the as-prepared Li2Mn1xRuxO3 catalysts.
Fig. 2: Structural characterization of the as-prepared Li2Mn0.85Ru0.15O3.
Fig. 3: ORR activity and stability of Li2Mn1−xRuxO3.
Fig. 4: Operando XANES analysis and theoretical considerations.
Fig. 5: AEMFC performance using Li2Mn0.85Ru0.15O3 as cathode.
Fig. 6: OER performance using Li2Mn1xRuxO3.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are available in the article. The atomic coordinates of the computational models developed in this study have been deposited at figshare at https://doi.org/10.6084/m9.figshare.25287826.v2 (ref. 70). Source data are provided with this paper.

Change history

References

  1. Lu, S. F., Pan, J., Huang, A. B., Zhuang, L. & Lu, J. T. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA 105, 20611–20614 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  2. Gewirth, A. A. & Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg. Chem. 49, 3557–3566 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Shao, M., Chang, Q., Dodelet, J. P. & Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Firouzjaie, H. A. & Mustain, W. E. Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal. 10, 225–234 (2020).

    Article  CAS  Google Scholar 

  5. Omasta, T. J. et al. Strategies for reducing the PGM loading in high power AEMFC anodes. J. Electrochem. Soc. 165, F710–F717 (2018).

    Article  CAS  Google Scholar 

  6. Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Yin, J. et al. NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn–air batteries. ACS Nano 11, 2275–2283 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Ng, J. W. D. et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053 (2016).

    Article  CAS  Google Scholar 

  9. Cheng, F. et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem. Int. Ed. 52, 2474–2477 (2013).

    Article  CAS  Google Scholar 

  10. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Meng, Y. et al. Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 136, 11452–11464 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Zhong, X. et al. Boosting oxygen reduction activity and enhancing stability through structural transformation of layered lithium manganese oxide. Nat. Commun. 12, 3136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Douglin, J. C. et al. High-performance ionomerless cathode anion-exchange membrane fuel cells with ultra-low-loading Ag–Pd alloy electrocatalysts. Nat. Energy 8, 1262–1272 (2023).

    Article  CAS  Google Scholar 

  14. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  15. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  CAS  Google Scholar 

  17. Zhang, M. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 7, 522–540 (2022).

    Article  Google Scholar 

  18. Lu, Z., MacNeil, D. & Dahn, J. Layered Li[NixCo1−2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A200 (2001).

    Article  CAS  Google Scholar 

  19. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Sathiya, M. et al. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hong, W. T. et al. Probing LaMO3 metal and oxygen partial density of states using X-ray emission, absorption, and photoelectron spectroscopy. J. Phys. Chem. C 119, 2063–2072 (2015).

    Article  CAS  Google Scholar 

  23. Zhou, J. et al. Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nat. Commun. 11, 1984 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Li, L. et al. In situ/operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv. Funct. Mater. 31, 2104746 (2021).

    Article  CAS  Google Scholar 

  26. Lin, C. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021).

    Article  CAS  Google Scholar 

  27. Liu, H. et al. Insight into the role of metal–oxygen bond and O 2p hole in high-voltage cathode LiNixMn2–xO4. J. Phys. Chem. C 121, 16079–16087 (2017).

    Article  CAS  Google Scholar 

  28. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Saubanère, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    Article  Google Scholar 

  30. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  31. Mitra, C. et al. Direct observation of electron doping in La0.7Ce0.3MnO3 using X-ray absorption spectroscopy. Phys. Rev. B 67, 092404 (2003).

    Article  Google Scholar 

  32. Vasiliev, A. N. et al. Valence states and metamagnetic phase transition in partially B-site-disordered perovskite EuMn0.5Co0.5O3. Phys. Rev. B 77, 104442 (2008).

    Article  Google Scholar 

  33. Hollmann, N. et al. Local symmetry and magnetic anisotropy in multiferroic MnWO4 and antiferromagnetic CoWO4 studied by soft X-ray absorption spectroscopy. Phys. Rev. B 82, 184429 (2010).

    Article  Google Scholar 

  34. Nemrava, S. et al. Three oxidation states of manganese in the barium hexaferrite BaFe12–xMnxO19. Inorg. Chem. 56, 3861–3866 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, G. et al. Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. J. Mater. Chem. A 6, 9854–9859 (2018).

    Article  CAS  Google Scholar 

  36. Croft, M. et al. Systematic Mn d-configuration change in the La1−xCaxMnO3 system: a Mn K-edge XAS study. Phys. Rev. B 55, 8726 (1997).

    Article  CAS  Google Scholar 

  37. Guan, D. et al. Exceptionally robust face‐sharing motifs enable efficient and durable water oxidation. Adv. Mater. 33, 2103392 (2021).

    Article  CAS  Google Scholar 

  38. Gao, T. et al. Synthesis and properties of layered-structured Mn5O8 nanorods. J. Phys. Chem. C 114, 922–928 (2010).

    Article  CAS  Google Scholar 

  39. Lü, M., Deng, X. L., Waerenborgh, J. C., Wu, X. J. & Meng, J. Redox chemistry and magnetism of LaSrM0.5Ru0.5O4±δ (M = Co, Ni and Zn) Ruddlesden–Popper phases. Dalton Trans. 41, 11507–11518 (2012).

    Article  PubMed  Google Scholar 

  40. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  41. Calle-Vallejo, F., Martínez, J. I., García-Lastra, J. M., Abad, E. & Koper, M. T. M. Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins. Surf. Sci. 607, 47–53 (2013).

    Article  CAS  Google Scholar 

  42. Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  CAS  Google Scholar 

  43. Ríos, E. et al. Electrocatalysis of oxygen reduction on CuxMn3−xO4 (1.0 ≤ x ≤ 1.4) spinel particles/polypyrrole composite electrodes. Int. J. Hydrogen Energy 33, 4945–4954 (2008).

    Article  Google Scholar 

  44. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Li, X. et al. Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3. Sci. Adv. 5, eaav6262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sathiya, M. et al. High performance Li2Ru1−yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem. Mater. 25, 1121–1131 (2013).

    Article  CAS  Google Scholar 

  47. Nilsson, A. et al. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100, 111–114 (2005).

    Article  CAS  Google Scholar 

  48. Wang, J. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021).

    Article  Google Scholar 

  49. Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019).

    Article  CAS  Google Scholar 

  50. Grimaud, A. et al. Oxygen evolution activity and stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: the influence of transition metal coordination. J. Phys. Chem. C 117, 25926–25932 (2013).

    Article  CAS  Google Scholar 

  51. Pao, C.-W. et al. The new X-ray absorption fine-structure beamline with sub-second time resolution at the Taiwan Photon Source. J. Synchrotron Radiat. 28, 930–938 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Paulus, U., Schmidt, T., Gasteiger, H. & Behm, R. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001).

    Article  CAS  Google Scholar 

  54. McCrory, C. C., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Forslund, R. P. et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexOδ Ruddlesden–Popper oxides. Nat. Commun. 9, 3150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Peng, H. et al. Alkaline polymer electrolyte fuel cells stably working at 80 °C. J. Power Sources 390, 165–167 (2018).

    Article  CAS  Google Scholar 

  57. Huai, L., Chen, Z. & Li, J. Degradation mechanism of cimethyl carbonate (DMC) dissociation on the LiCoO2 cathode surface: a first-principles study. ACS Appl. Mater. Interfaces 9, 36377–36384 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. He, Q. et al. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 30, 2000407 (2020).

    Article  CAS  Google Scholar 

  59. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  60. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  61. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  62. Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011).

    Article  CAS  Google Scholar 

  63. Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  64. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  65. Device Studio Version 2021A (Hongzhiwei Technology, 2021).

  66. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  67. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  68. Kulkarni, A., Siahrostami, S., Patel, A. & Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10, 3722–3730 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Zhong, X. et al. Atomistic configurations of Li2Mn1−xRuxO3 (x = 0, 0.1, 0.15, 0.2) models. figshare https://doi.org/10.6084/m9.figshare.25287826.v2 (2024).

  71. Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

    Article  CAS  Google Scholar 

  72. Yang, Y. et al. High-loading composition-tolerant Co–Mn spinel oxides with performance beyond 1 W/cm2 in alkaline polymer electrolyte fuel cells. ACS Energy Lett. 4, 1251–1257 (2019).

    Article  CAS  Google Scholar 

  73. Ponce-González, J. et al. High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy Environ. Sci. 9, 3724–3735 (2016).

    Article  Google Scholar 

  74. Maurya, S., Fujimoto, C. H., Hibbs, M. R., Narvaez Villarrubia, C. & Kim, Y. S. Toward improved alkaline membrane fuel cell performance using quaternized aryl-ether free polyaromatics. Chem. Mater. 30, 2188–2192 (2018).

    Article  CAS  Google Scholar 

  75. Fan, J. et al. Cationic polyelectrolytes, stable in 10 M KOHaq at 100 °C. ACS Macro Lett. 6, 1089–1093 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. US Geological Survey. Platinum-Group Metals in March 2022. Mineral Industry Surveys (2022).

  77. US Geological Survey. Manganese in April 2022. Mineral Industry Surveys (2022).

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (22179098, to J.M.). M.Y. acknowledges support from the National Natural Science Foundation of China (52302302), the Fundamental Research Funds for the Central Universities, the National Key R&D Program of China (2022YFE0208000) and HZWTECH for providing computational facilities. Z.H. acknowledges support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials. P.S., T.K. and S.S. acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through project number 403371556 GZ: INST 131/789-1 FUGG and the German–French Project ‘capital ReAlCharge’ (STR 596/13-1) and the German Federal Ministry of Education and Research (BMBF) through the HyThroughGen project within the technology platform ‘H2Giga’ (grant no. 03HY108D). P.S. and M.K. acknowledge the financial support by BMBF under grant numbers 03SF0613D ‘AEMready’, 03HY130B ‘AEM-Direkt’ and 03HY302Q ‘H2Mare’.

Author information

Authors and Affiliations

Authors

Contributions

J.M. conceived the project and designed the experiments. X.Z., T.K., M.K., S.S., K.G.R., C.G., L.Z., W.H.K., M.A., M.S., N.A.-V., J.-M.C., S.-C.H., C.-W.P., Y.-C.C., Y.H., Z.H., P.S. and J.M. carried out the experimental work and data analysis. L.S. and M.Y. performed the theoretical calculations. All of the authors discussed the results and commented on the paper. X.Z., Z.H., P.S. and J.M. wrote the paper with contributions from all of the co-authors.

Corresponding authors

Correspondence to Zhiwei Hu, Peter Strasser or Jiwei Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Peng Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–45 and Tables 1–11.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Sui, L., Yang, M. et al. Stabilization of layered lithium-rich manganese oxide for anion exchange membrane fuel cells and water electrolysers. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01136-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing