Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High lithium oxide prevalence in the lithium solid–electrolyte interphase for high Coulombic efficiency

Abstract

Current electrolyte design for Li metal anodes emphasizes fluorination as the pre-eminent guiding principle for high Coulombic efficiency (CE) based largely on perceived benefits of LiF in the solid–electrolyte interphase (SEI). However, the lack of experimental techniques that accurately quantify SEI compositional breakdown impedes rigorous scrutiny of other potentially key phases. Here we demonstrate a quantitative titration approach to reveal Li2O content in cycled Li anodes, enabling this previously titration-silent phase to be compared statistically with a wide range of other leading SEI constituents including LiF. Across diverse electrolytes, CE correlates most strongly with Li2O above other phases, reaching its highest values when Li2O particles order along the SEI, demonstrating integrated chemical–structural function. The beneficial role of Li2O was exploited to create entirely fluorine-free electrolytes that breach >99% CE, highlighting electrolyte/SEI oxygenation as an underexplored design strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Titration strategy for quantification of Li2O in cycled Li anodes.
Fig. 2: Quantification of SEI/Li0 residuals in diverse electrolytes.
Fig. 3: Statistical correlations between quantifiable SEI/Li0 residual phases and CE.
Fig. 4: Cryo-TEM imaging of Li2O in plated Li electrodes.
Fig. 5: Li2O formation in LiFSI-based LHCE electrolytes.
Fig. 6: Design of fluorine-free high-CE electrolytes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included within the article and its Supplementary Information files. Source data are provided with this paper.

References

  1. Electrochemical Energy Storage Technical Team Roadmap (US DOE Vehicle Technologies Office, 2017).

  2. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  Google Scholar 

  3. Batteries: 2021 Annual Progress Report (US DOE Vehicle Technologies Office, 2022).

  4. Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article  Google Scholar 

  5. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  Google Scholar 

  6. Hobold, G. M. & Gallant, B. M. Quantifying capacity loss mechanisms of Li metal anodes beyond inactive Li0. ACS Energy Lett. 7, 3458–3466 (2022).

    Article  Google Scholar 

  7. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  Google Scholar 

  8. Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    Article  Google Scholar 

  9. Wu, H., Jia, H., Wang, C., Zhang, J. G. & Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11, 2003092 (2020).

    Article  Google Scholar 

  10. Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  Google Scholar 

  11. Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).

    Article  Google Scholar 

  12. Dedryvère, R. et al. XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode. J. Electrochem. Soc. 152, A689 (2005).

    Article  Google Scholar 

  13. Schechter, A., Aurbach, D. & Cohen, H. X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15, 3334–3342 (1999).

    Article  Google Scholar 

  14. Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating interphases. J. Electrochem. Soc. 166, A5184–A5186 (2018).

    Article  Google Scholar 

  15. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  Google Scholar 

  16. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article  Google Scholar 

  17. Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid–electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).

    Article  Google Scholar 

  18. Guo, R. & Gallant, B. M. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium. Chem. Mater. 32, 5525–5533 (2020).

    Article  Google Scholar 

  19. Smeu, M. & Leung, K. Electron leakage through heterogeneous LiF on lithium–metal battery anodes. Phys. Chem. Chem. Phys. 23, 3214–3218 (2021).

    Article  Google Scholar 

  20. Chen, Y. C., Ouyang, C. Y., Song, L. J. & Sun, Z. L. Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. J. Phys. Chem. C. 115, 7044–7049 (2011).

    Article  Google Scholar 

  21. He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2020).

    Article  Google Scholar 

  22. Huang, W., Wang, H., Boyle, D. T., Li, Y. & Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 5, 1128–1135 (2020).

    Article  Google Scholar 

  23. Heiskanen, S. K., Kim, J. & Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3, 2322–2333 (2019).

    Article  Google Scholar 

  24. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  Google Scholar 

  25. Zhao, Y. et al. Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. Chem 9, 682–697 (2023).

    Article  Google Scholar 

  26. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  Google Scholar 

  27. Kim, M. S. et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022).

    Article  Google Scholar 

  28. Liu, Y. et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    Article  Google Scholar 

  29. Deng, W. et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat. Energy 7, 1031–1041 (2022).

    Article  Google Scholar 

  30. McShane, E. J. et al. Quantifying graphite solid–electrolyte interphase chemistry and its impact on fast charging. ACS Energy Lett. 7, 2734–2744 (2022).

    Article  Google Scholar 

  31. Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).

    Article  Google Scholar 

  32. von Holtum, B. et al. Accessing the primary solid–electrolyte interphase on lithium metal: a method for low-concentration compound analysis. ChemSusChem 16, e202201912 (2023).

    Article  Google Scholar 

  33. Jaworowski, R. J., Potts, J. R. & Hobart, E. W. The determination of oxygen in lithium. Anal. Chem. 35, 1275–1279 (1963).

    Article  Google Scholar 

  34. Sax, H. I. & Steinmetz, H. Determination of Oxygen in Lithium Metal (Oak Ridge National Laboratory, 1958).

  35. Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    Article  Google Scholar 

  36. Steinberg, K. et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat. Energy 8, 138–148 (2022).

    Article  Google Scholar 

  37. Cao, X. et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc. Natl Acad. Sci. USA 118, e2020357118 (2021).

    Article  Google Scholar 

  38. Ren, X. et al. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl Acad. Sci. USA 117, 28603–28613 (2020).

    Article  Google Scholar 

  39. Fiedler, C., Luerssen, B., Rohnke, M., Sann, J. & Janek, J. XPS and SIMS analysis of solid electrolyte interphases on lithium formed by ether-based electrolytes. J. Electrochem. Soc. 164, A3742–A3749 (2017).

    Article  Google Scholar 

  40. Aurbach, D., Ein‐Ely, Y. & Zaban, A. The surface chemistry of lithium electrodes in alkyl carbonate solutions. J. Electrochem. Soc. 141, L1–L3 (2019).

    Article  Google Scholar 

  41. Leung, K., Soto, F., Hankins, K., Balbuena, P. B. & Harrison, K. L. Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces. J. Phys. Chem. C. 120, 6302–6313 (2016).

    Article  Google Scholar 

  42. Michan, A. L. et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 28, 8149–8159 (2016).

    Article  Google Scholar 

  43. Jaumann, T. et al. Role of 1,3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries. J. Electrochem. Soc. 163, A557–A564 (2016).

    Article  Google Scholar 

  44. Corder, G. W. & Foreman, D. I. in Nonparametric Statistics for Non-Statisticians 122–154 (John Wiley & Sons, 2011).

  45. Huang, Y. et al. Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15, 4349–4361 (2022).

    Article  Google Scholar 

  46. Liu, S. et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. 60, 3661–3671 (2021).

    Article  Google Scholar 

  47. Qiu, F. et al. A concentrated ternary‐salts electrolyte for high reversible Li metal battery with slight excess Li. Adv. Energy Mater. 9, 1803372 (2018).

    Article  Google Scholar 

  48. Wang, Q. et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 11, 4188 (2020).

    Article  Google Scholar 

  49. Yuan, X., Liu, B., Mecklenburg, M. & Li, Y. Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation. Nature 620, 86–91 (2023).

    Article  Google Scholar 

  50. Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208 (1997).

    Article  Google Scholar 

  51. Li, Y. et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2, 2167–2177 (2018).

    Article  Google Scholar 

  52. Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Review—localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).

    Article  Google Scholar 

  53. Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article  Google Scholar 

  54. Shkrob, I. A., Marin, T. W., Zhu, Y. & Abraham, D. P. Why bis(fluorosulfonyl)imide is a ‘magic anion’ for electrochemistry. J. Phys. Chem. C. 118, 19661–19671 (2014).

    Article  Google Scholar 

  55. Moon, J. et al. Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nat. Commun. 13, 4538 (2022).

    Article  Google Scholar 

  56. Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022).

    Article  Google Scholar 

  57. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  Google Scholar 

  58. Kim, S. C. et al. Data-driven electrolyte design for lithium metal anodes. Proc. Natl Acad. Sci. USA 120, e2214357120 (2023).

    Article  Google Scholar 

  59. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  Google Scholar 

  60. Sayahpour, B. et al. Quantitative analysis of sodium metal deposition and interphase in Na metal batteries. Energy Environ. Sci. 17, 1216–1228 (2024).

    Article  Google Scholar 

  61. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work made use of the Massachusetts Institute of Technology (MIT) Materials Research Science and Engineering Center Shared Experimental Facilities, supported by the National Science Foundation under award number DMR-14-19807. This work also made use of the MIT Department of Chemistry Instrumentation Facility. Titration method development was supported in part by an Electrochemical Society–Toyota Young Investigator Award (B.M.G. and K.S.). The Cryo-HRTEM work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number DE-SC0022955 (Y.L. and C.W.). We also thank T. Buonassisi, MIT, for helpful discussions regarding the statistical analysis presented herein.

Author information

Authors and Affiliations

Authors

Contributions

G.M.H. and B.M.G. conceived the idea and designed the experiments. G.M.H. carried out experiments and measurements. C.W. and Y.L. co-designed Cryo-HRTEM experiments and performed imaging. K.S. assisted with method development. G.M.H. and B.M.G. analysed the data and prepared the initial draft of the paper. All authors discussed the results and contributed to the final version of the paper.

Corresponding author

Correspondence to Betar M. Gallant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Xinyong Tao, Atsuo Yamada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–7, Figs. 1–46 and Tables 1–11.

Source data

Source Data Fig. 1

Source data of all samples used for statistical analysis.

Source Data Fig. 2

Source data of all samples used for statistical analysis.

Source Data Fig. 3

Source data of all samples used for statistical analysis.

Source Data Fig. 4

Integrated NMR data of all samples.

Source Data Fig. 5

Source data of all samples used for statistical analysis.

Source Data Fig. 6

Source data of all samples used for statistical analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hobold, G.M., Wang, C., Steinberg, K. et al. High lithium oxide prevalence in the lithium solid–electrolyte interphase for high Coulombic efficiency. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-024-01494-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing