Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncovering the predictive pathways of lithium and sodium interchange in layered oxides

Abstract

Ion exchange is a powerful method to access metastable materials with advanced functionalities for energy storage applications. However, high concentrations and unfavourably large excesses of lithium are always used for synthesizing lithium cathodes from parent sodium material, and the reaction pathways remain elusive. Here, using layered oxides as model materials, we demonstrate that vacancy level and its corresponding lithium preference are critical in determining the accessible and inaccessible ion exchange pathways. Taking advantage of the strong lithium preference at the right vacancy level, we establish predictive compositional and structural evolution at extremely dilute and low excess lithium based on the phase equilibrium between Li0.94CoO2 and Na0.48CoO2. Such phase separation behaviour is general in both surface reaction-limited and diffusion-limited exchange conditions and is accomplished with the charge redistribution on transition metals. Guided by this understanding, we demonstrate the synthesis of NayCoO2 from the parent LixCoO2 and the synthesis of Li0.94CoO2 from NayCoO2 at 1–1,000 Li/Na (molar ratio) with an electrochemical assisted ion exchange method by mitigating the kinetic barriers. Our study opens new opportunities for ion exchange in predictive synthesis and separation applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase separation and two-phase equilibrium between Li0.94CoO2 and Na0.48CoO2.
Fig. 2: Revealing structural evolution during Li ion exchange with Na0.67CoO2.
Fig. 3: Reverse conversion from LixCoO2 to NayCoO2.
Fig. 4: Full conversion from Na parent host to LixCoO2 by electrochemically assisted ion exchange.
Fig. 5: Phase diagram of Li and Na interchange in layered cobalt oxides.

Similar content being viewed by others

Data availability

The authors declare that all relevant data are included in the paper and Supplementary Information files and are available from the corresponding author upon reasonable request.

References

  1. Gwon, H. et al. Ion-exchange mechanism of layered transition-metal oxides: case study of LiNi0.5Mn0.5O2. Inorg. Chem. 53, 8083–8087 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Park, Y.-U. et al. In situ tracking kinetic pathways of Li+/Na+ substitution during ion-exchange synthesis of LixNa1.5–xVOPO4F0.5. J. Am. Chem. Soc. 139, 12504–12516 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science https://doi.org/10.1126/science.1103755 (2004).

  5. Beberwyck, B. J. & Alivisatos, A. P. Ion exchange synthesis of III–V nanocrystals. J. Am. Chem. Soc. 134, 19977–19980 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Li, Z., Saruyama, M., Asaka, T., Tatetsu, Y. & Teranishi, T. Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions. Science 373, 332–337 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Zou, Y.-C. et al. Ion exchange in atomically thin clays and micas. Nat. Mater. 20, 1677–1682 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Whittaker, M. L., Lammers, L. N., Carrero, S., Gilbert, B. & Banfield, J. F. Ion exchange selectivity in clay is controlled by nanoscale chemical–mechanical coupling. Proc. Natl Acad. Sci. USA 116, 22052–22057 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delmas, C., Braconnier, J.-J. & Hagenmuller, P. A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction. Mater. Res. Bull. 17, 117–123 (1982).

    Article  CAS  Google Scholar 

  10. Carlier, D. et al. On the metastable O2-type LiCoO2. Solid State Ion. 144, 263–276 (2001).

    Article  CAS  Google Scholar 

  11. Tournadre, F. et al. On the mechanism of the P2–Na0.70CoO2→O2–LiCoO2 exchange reaction—part I: proposition of a model to describe the P2–O2 transition. J. Solid State Chem. 177, 2790–2802 (2004).

    Article  CAS  Google Scholar 

  12. Tournadre, F., Croguennec, L., Willmann, P. & Delmas, C. On the mechanism of the P2–Na0.70CoO2→O2–LiCoO2 exchange reaction—part II: an in situ X-ray diffraction study. J. Solid State Chem. 177, 2803–2809 (2004).

    Article  CAS  Google Scholar 

  13. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C. 99, 81–85 (1980).

    Article  CAS  Google Scholar 

  14. Capitaine, F., Gravereau, P. & Delmas, C. A new variety of LiMnO2 with a layered structure. Solid State Ion. 89, 197–202 (1996).

    Article  CAS  Google Scholar 

  15. Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).

    Article  CAS  Google Scholar 

  16. Paulsen, J. M., Donaberger, R. A. & Dahn, J. R. Layered T2-, O6-, O2-, and P2-type A2/3[M′2+1/3M4+2/3]O2 bronzes, A = Li, Na; M‘ = Ni, Mg; M = Mn, Ti. Chem. Mater. 12, 2257–2267 (2000).

    Article  CAS  Google Scholar 

  17. Paulsen, J. M. & Dahn, J. R. O2‐type Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries ii. structure, composition, and properties. J. Electrochem. Soc. 147, 2478 (2000).

    Article  CAS  Google Scholar 

  18. Paulsen, J. M., Thomas, C. L. & Dahn, J. R. Layered Li‐Mn‐oxide with the O2 structure: a cathode material for Li‐ion cells which does not convert to spinel. J. Electrochem. Soc. 146, 3560–3565 (1999).

    Article  CAS  Google Scholar 

  19. Paulsen, J. M. & Dahn, J. R. Studies of the layered manganese bronzes, Na2/3[Mn1−xMx]O2 with M=Co, Ni, Li, and Li2/3[Mn1−xMx]O2 prepared by ion-exchange. Solid State Ion. 126, 3–24 (1999).

    Article  CAS  Google Scholar 

  20. Paulsen, J. M., Larcher, D. & Dahn, J. R. O2 structure Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries III. Ion exchange. J. Electrochem. Soc. 147, 2862–2867 (2000).

  21. Lu, Z., Donaberger, R. A., Thomas, C. L. & Dahn, J. R. T2 and O2 Li2/3[CoxNi1/3−x/2Mn2/3−x/2]O2 electrode materials. J. Electrochem. Soc. 149, A1083 (2002).

    Article  CAS  Google Scholar 

  22. Lu, Z. & Dahn, J. R. The effect of Co substitution for Ni on the structure and electrochemical behavior of T2 and O2 structure Li2/3[CoxNi1/3−xMn2/3]O2. J. Electrochem. Soc. 148, A237 (2001).

    Article  CAS  Google Scholar 

  23. Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, J. et al. Alluaudite LiMnPO4: a new Mn-based positive electrode for Li rechargeable batteries. J. Mater. Chem. A 2, 8632–8636 (2014).

    Article  CAS  Google Scholar 

  25. Kim, J. et al. LiFePO4 with an alluaudite crystal structure for lithium ion batteries. Energy Environ. Sci. 6, 830–834 (2013).

    Article  CAS  Google Scholar 

  26. Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Radin, M. D., Alvarado, J., Meng, Y. S. & Van der Ven, A. Role of crystal symmetry in the reversibility of stacking-sequence changes in layered intercalation electrodes. Nano Lett. 17, 7789–7795 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Xia, H., Meng, S. Y., Lu, L. & Ceder, G. Electrochemical behavior and Li diffusion study of LiCoO2 thin film electrodes prepared by PLD. in Advanced Materials for Micro- and Nano-Systems (AMMNS) (2007); http://hdl.handle.net/1721.1/35827

  29. Hess, A. et al. Determination of state of charge-dependent asymmetric Butler–Volmer kinetics for LixCoO2 electrode using GITT measurements. J. Power Sources 299, 156–161 (2015).

    Article  CAS  Google Scholar 

  30. Shibata, T., Fukuzumi, Y., Kobayashi, W. & Moritomo, Y. Fast discharge process of layered cobalt oxides due to high Na+ diffusion. Sci. Rep. 5, 9006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mo, Y., Ong, S. P. & Ceder, G. Insights into diffusion mechanisms in P2 layered oxide materials by first-principles calculations. Chem. Mater. 26, 5208–5214 (2014).

    Article  CAS  Google Scholar 

  32. Lesnyak, V., Brescia, R., Messina, G. C. & Manna, L. Cu vacancies boost cation exchange reactions in copper selenide nanocrystals. J. Am. Chem. Soc. 137, 9315–9323 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Groeneveld, E. et al. Tailoring ZnSe–CdSe colloidal quantum dots via cation exchange: from core/shell to alloy nanocrystals. ACS Nano 7, 7913–7930 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Casavola, M. et al. Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry. Chem. Mater. 24, 294–302 (2012).

    Article  CAS  Google Scholar 

  35. Takahashi, Y. et al. Anisotropic electrical conductivity in LiCoO2 single crystal. J. Solid State Chem. 164, 1–4 (2002).

    Article  CAS  Google Scholar 

  36. Hill, G. T., Shi, F., Zhou, H., Han, Y. & Liu, C. Layer spacing gradient (NaLi)1−xCoO2 for electrochemical Li extraction. Matter 4, 1611–1624 (2021).

    Article  CAS  Google Scholar 

  37. Xue, Z. et al. Sodium doping to enhance electrochemical performance of overlithiated oxide cathode materials for Li-ion batteries via Li/Na ion-exchange method. ACS Appl. Mater. Interfaces 10, 27141–27149 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Lei, Y., Li, X., Liu, L. & Ceder, G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem. Mater. 26, 5288–5296 (2014).

    Article  CAS  Google Scholar 

  39. Ménétrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator–metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9, 1135–1140 (1999).

    Article  Google Scholar 

  40. Dahéron, L. et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2008).

    Article  Google Scholar 

  41. Viciu, L. et al. Crystal structure and elementary properties of NaxCoO2 (x = 0.32, 0.51, 0.6, 0.75, and 0.92) in the three-layer NaCoO2 family. Phys. Rev. B 73, 174104 (2006).

    Article  Google Scholar 

  42. Ono, Y. et al. Crystal structure, electric and magnetic properties of layered cobaltite β-NaxCoO2. J. Solid State Chem. 166, 177–181 (2002).

    Article  CAS  Google Scholar 

  43. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article  Google Scholar 

  49. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  50. Kaufman, J. L. & Van Der Ven, A. NaxCoO2 phase stability and hierarchical orderings in the O3/P3 structure family. Phys. Rev. Mater. 3, 015402 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Chen for performing ultramicrotome cutting. This work is supported by the US Department of Energy (DOE), Office of Basic Energy Sciences under award DE-SC0022231. This research used resources of the Advanced Photon Source, a US DOE Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. This work made use of instruments in the Electron Microscopy Core of UIC’s Research Resources Center. Acquisition of UIC JEOL ARM200CF was supported by a MRI-R2 grant from the National Science Foundation (DMR-0959470). The Gatan Continuum GIF acquisition at UIC was supported by a MRI grant from the National Science Foundation (DMR-1626056). This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN and Northwestern’s MRSEC programme (NSF DMR-1720139). P.C. acknowledges funding from the National Research Foundation under NRF Fellowship NRFF12-2020-0012. We acknowledge that the computational work involved in this research is supported by National University of Singapore IT Research computing group (https://nusit.nus.edu.sg), and we thank software tuning support from M. Dias Costa and W. Junhong. This work used computational resources of the supercomputer Fugaku provided by RIKEN through the HPCI System Research Project (project ID hp 230188). A proportion of computational work was performed on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and Y.H. conceived and developed the idea and planned the experiments. P.C. and W.X. performed the DFT calculation. G.T.H., H.Z. and S.Z. performed the synchrotron XRD measurement. P.S., X.H. and Y.H. performed the STEM imaging, EELS and EDS analysis with the assistance of F.S. G.Y. assisted with the ICP-MS data acquirement. S.Z. performed the SEM imaging. J.L. and R.W. helped with data collation during revision. All authors analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Chong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Tables 1–9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Xie, W., Hill, G.T. et al. Uncovering the predictive pathways of lithium and sodium interchange in layered oxides. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01862-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing