Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of mitochondria in rheumatic diseases

Abstract

The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.

Key points

  • Mitochondrial DNA mutations can affect mitochondrial function and lead or contribute to diseases, including rheumatic diseases.

  • Mitochondria are involved in the regulation of several important processes, including cell death.

  • Mitochondria contain numerous bacterial-like molecules that are able to trigger inflammatory responses by the innate immune system.

  • Increased levels of extracellular mitochondria are observed in patients with rheumatic diseases and are thought to contribute to disease.

  • Mitochondria are immunogenic, and anti-mitochondrial antibodies (for example, antibodies that target cardiolipin, mitofusin 1, mitochondrial DNA or mitochondrial RNA) are commonly seen in patients with rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondrial morphology and organization of mitochondrial DNA.
Fig. 2: Mitochondrial dynamics and regulation of the mitochondrial network by fusion and fission.
Fig. 3: Mitophagy regulates the mitochondrial mass during erythrocyte maturation.
Fig. 4: The various roles of the mitochondrion in inflammation.
Fig. 5: The role of extracellular mitochondria in SLE pathophysiology.
Fig. 6: Mitochondrial antigen presentation by MHC molecules in autoimmune diseases.

Similar content being viewed by others

References

  1. Wincup, C. & Radziszewska, A. Abnormal mitochondrial physiology in the pathogenesis of systemic lupus erythematosus. Rheum. Dis. Clin. North. Am. 47, 427–439 (2021).

    Article  PubMed  Google Scholar 

  2. Colonna, L., Lood, C. & Elkon, K. B. Beyond apoptosis in lupus. Curr. Opin. Rheumatol. 26, 459–466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benda, C. Über die Spermatogenese der vertebraten und höherer Evertebraten, II. Teil: die Histiogenese der Spermien. Arch. Anat. Physiol. 73, 393–398 (1898).

    Google Scholar 

  4. Miller, W. L. Role of mitochondria in steroidogenesis. Endocr. Dev. 20, 1–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Miller, W. L. & Portale, A. A. Genetics of vitamin D biosynthesis and its disorders. Best. Pract. Res. Clin. Endocrinol. Metab. 15, 95–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Piel, R. B. III, Dailey, H. A. Jr & Medlock, A. E. The mitochondrial heme metabolon: insights into the complex(ity) of heme synthesis and distribution. Mol. Genet. Metab. 128, 198–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schlame, M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 49, 1607–1620 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calabrese, G., Morgan, B. & Riemer, J. Mitochondrial glutathione: regulation and functions. Antioxid. Redox Signal. 27, 1162–1177 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Wiedemann, N. & Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Gray, M. W. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4, a011403 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Krysko, D. V. et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 32, 157–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schnaitman, C. & Greenawalt, J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J. Cell Biol. 38, 158–175 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardon, L. R., Burge, C., Clayton, D. A. & Karlin, S. Pervasive CpG suppression in animal mitochondrial genomes. Proc. Natl Acad. Sci. USA 91, 3799–3803 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fazzini, F. et al. Plasmid-normalized quantification of relative mitochondrial DNA copy number. Sci. Rep. 8, 15347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Bogenhagen, D. F. Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 1819, 914–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Wolstenholme, D. R. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141, 173–216 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Chomyn, A. et al. URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234, 614–618 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Calvo, S. E. & Mootha, V. K. The mitochondrial proteome and human disease. Annu. Rev. Genomics Hum. Genet. 11, 25–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645–658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rorbach, J. & Minczuk, M. The post-transcriptional life of mammalian mitochondrial RNA. Biochem. J. 444, 357–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Brown, M. D., Torroni, A., Reckord, C. L. & Wallace, D. C. Phylogenetic analysis of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple independent occurrences of the common mutations. Hum. Mutat. 6, 311–325 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Natl Acad. Sci. USA 77, 6715–6719 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pyle, A. et al. Extreme-depth re-sequencing of mitochondrial DNA finds no evidence of paternal transmission in humans. PLoS Genet. 11, e1005040 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Elson, J. L. et al. Analysis of European mtDNAs for recombination. Am. J. Hum. Genet. 68, 145–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Chinnery, P. F. & Gomez-Duran, A. Oldies but goldies mtDNA population variants and neurodegenerative diseases. Front. Neurosci. 12, 682 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wallace, D. C., Brown, M. D. & Lott, M. T. Mitochondrial DNA variation in human evolution and disease. Gene 238, 211–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Wallace, D. C. & Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5, a021220 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, D., Wei, Y., Zheng, H. X., Jin, L. & Wang, J. Contribution of mitochondrial DNA variation to chronic disease in East Asian populations. Front. Mol. Biosci. 6, 128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gergely, P. Jr et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46, 175–190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vyshkina, T. et al. Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus. Clin. Immunol. 129, 31–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Soto-Hermida, A. et al. mtDNA haplogroups and osteoarthritis in different geographic populations. Mitochondrion 15, 18–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Coto-Segura, P. et al. Common European mitochondrial haplogroups in the risk for psoriasis and psoriatic arthritis. Genet. Test. Mol. Biomark. 16, 621–623 (2012).

    Article  CAS  Google Scholar 

  38. Lee, H. T. et al. Leukocyte mitochondrial DNA alteration in systemic lupus erythematosus and its relevance to the susceptibility to lupus nephritis. Int. J. Mol. Sci. 13, 8853–8868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liou, C. W. et al. Association between a common mitochondrial DNA D-loop polycytosine variant and alteration of mitochondrial copy number in human peripheral blood cells. J. Med. Genet. 47, 723–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Jonsen, A. et al. Mitochondrial DNA polymorphisms are associated with susceptibility and phenotype of systemic lupus erythematosus. Lupus 18, 309–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Biniecka, M. et al. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann. Rheum. Dis. 75, 2192–2200 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Biniecka, M. et al. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arthritis Rheum. 63, 2172–2182 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Harty, L. C. et al. Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann. Rheum. Dis. 71, 582–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Da Sylva, T. R., Connor, A., Mburu, Y., Keystone, E. & Wu, G. E. Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res. Ther. 7, R844–R851 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jaiswal, K. S. et al. Differential mitochondrial genome in patients with rheumatoid arthritis. Autoimmunity 54, 1–12 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Du, J. et al. Germline and somatic mtDNA mutation spectrum of rheumatoid arthritis patients in the Taizhou area, China. Rheumatology 59, 2982–2991 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Rego-Perez, I., Fernandez-Moreno, M., Fernandez-Lopez, C., Arenas, J. & Blanco, F. J. Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum. 58, 2387–2396 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kirichok, Y., Krapivinsky, G. & Clapham, D. E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Sampson, H. W., Davis, R. W. & Dufner, D. C. Spondyloarthropathy in progressive ankylosis mice: ultrastructural features of the intervertebral disk. Acta Anat. 141, 36–41 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Akram, M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 68, 475–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Houten, S. M. & Wanders, R. J. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 33, 469–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Banki, K., Hutter, E., Gonchoroff, N. J. & Perl, A. Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J. Immunol. 162, 1466–1479 (1999).

    CAS  PubMed  Google Scholar 

  54. Palmieri, F. in Encyclopedia of Biological Chemistry (eds Lennarz, W. J. & Daniel Lane, M.) 149–158 (Academic Press, 2013).

  55. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vorobjeva, N. et al. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur. J. Cell Biol. 96, 254–265 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Rousset, S. et al. The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 35, 135–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Z. et al. The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS One 8, e75044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Angelova, P. R. & Abramov, A. Y. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 592, 692–702 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tuominen, A. et al. A natural antibody to oxidized cardiolipin binds to oxidized low-density lipoprotein, apoptotic cells, and atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 26, 2096–2102 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Ye, G. et al. Oxidative stress-mediated mitochondrial dysfunction facilitates mesenchymal stem cell senescence in ankylosing spondylitis. Cell Death Dis. 11, 775 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, S. Y. et al. Synoviocyte apoptosis may differentiate responder and non-responder patients to methotrexate treatment in rheumatoid arthritis. Arch. Pharm. Res. 37, 1286–1294 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morgan, P. E., Sturgess, A. D. & Davies, M. J. Evidence for chronically elevated serum protein oxidation in systemic lupus erythematosus patients. Free Radic. Res. 43, 117–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Perl, A. Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat. Rev. Rheumatol. 9, 674–686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, H. T. et al. The pathogenesis of systemic lupus erythematosus — from the viewpoint of oxidative stress and mitochondrial dysfunction. Mitochondrion 30, 1–7 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Li, W., Sivakumar, R., Titov, A. A., Choi, S. C. & Morel, L. Metabolic factors that contribute to lupus pathogenesis. Crit. Rev. Immunol. 36, 75–98 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. van der Windt, G. J. & Pearce, E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249, 27–42 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Kovacs, B., Vassilopoulos, D., Vogelgesang, S. A. & Tsokos, G. C. Defective CD3-mediated cell death in activated T cells from patients with systemic lupus erythematosus: role of decreased intracellular TNF-α. Clin. Immunol. Immunopathol. 81, 293–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Buang, N. et al. Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nat. Commun. 12, 1980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caielli, S. et al. A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat. Med. 25, 75–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Caielli, S., Banchereau, J. & Pascual, V. Dissecting the mechanisms responsible for the generation of regulatory versus pathogenic human CD4+ T cells by TLR9-activated plasmacytoid dendritic cells. J. Immunol. 204, 230.233–230.233 (2020).

    Google Scholar 

  77. Manderson, A. P., Botto, M. & Walport, M. J. The role of complement in the development of systemic lupus erythematosus. Annu. Rev. Immunol. 22, 431–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Walport, M. J. Lupus, DNase and defective disposal of cellular debris. Nat. Genet. 25, 135–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Martin, M. & Blom, A. M. Complement in removal of the dead — balancing inflammation. Immunol. Rev. 274, 218–232 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Thielens, N. M., Tedesco, F., Bohlson, S. S., Gaboriaud, C. & Tenner, A. J. C1q: a fresh look upon an old molecule. Mol. Immunol. 89, 73–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ling, G. S. et al. C1q restrains autoimmunity and viral infection by regulating CD8+ T cell metabolism. Science 360, 558–563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yagi, M. et al. p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Nucleic Acids Res. 40, 9717–9737 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weyand, C. M. & Goronzy, J. J. A mitochondrial checkpoint in autoimmune disease. Cell Metab. 28, 185–186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oaks, Z. & Perl, A. Metabolic control of the epigenome in systemic lupus erythematosus. Autoimmunity 47, 256–264 (2014).

    Article  PubMed  Google Scholar 

  85. Lai, Z. W. et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 64, 2937–2946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Perl, A. et al. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics 11, 1157–1174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Farnaghi, S. et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis. FASEB J. 31, 356–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Kucharská, J. et al. Treatment with coenzyme Q10, ω-3-polyunsaturated fatty acids and their combination improved bioenergetics and levels of coenzyme Q9 and Q10 in skeletal muscle mitochondria in experimental model of arthritis. Physiol. Res. 70, 723–733 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hsu, T. C. et al. Treatment with taurine attenuates hepatic apoptosis in NZB/W F1 mice fed with a high-cholesterol diet. J. Agric. Food Chem. 56, 9685–9691 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Boily, G. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3, e1759 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gerhart-Hines, Z. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 26, 1913–1923 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Traba, J. et al. Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. J. Biol. Chem. 292, 12153–12164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ungvari, Z. et al. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 297, H1876–H1881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ke, L. et al. The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp. Ther. Med. 22, 702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cleophas, M. C., Crişan, T. O. & Joosten, L. A. Factors modulating the inflammatory response in acute gouty arthritis. Curr. Opin. Rheumatol. 29, 163–170 (2017).

    Article  PubMed  Google Scholar 

  96. Veltri, K. L., Espiritu, M. & Singh, G. Distinct genomic copy number in mitochondria of different mammalian organs. J. Cell Physiol. 143, 160–164 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Molina, A. J. et al. Mitochondrial networking protects β-cells from nutrient-induced apoptosis. Diabetes 58, 2303–2315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karbowski, M. et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164, 493–499 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. MacVicar, T. & Langer, T. OPA1 processing in cell death and disease — the long and short of it. J. Cell Sci. 129, 2297–2306 (2016).

    CAS  PubMed  Google Scholar 

  103. Xu, L. et al. MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis. Osteoarthritis Cartilage 28, 1079–1091 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Mears, J. A. et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ravanan, P., Srikumar, I. F. & Talwar, P. Autophagy: the spotlight for cellular stress responses. Life Sci. 188, 53–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012).

    Article  PubMed  Google Scholar 

  111. Xiang, G. et al. BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming. Autophagy 13, 1543–1555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nagy, G., Barcza, M., Gonchoroff, N., Phillips, P. E. & Perl, A. Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J. Immunol. 173, 3676–3683 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Kammer, G. M., Perl, A., Richardson, B. C. & Tsokos, G. C. Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum. 46, 1139–1154 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Kyttaris, V. C., Juang, Y. T. & Tsokos, G. C. Immune cells and cytokines in systemic lupus erythematosus: an update. Curr. Opin. Rheumatol. 17, 518–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Caza, T. N. et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis. 73, 1888–1897 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. An, X., Schulz, V. P., Mohandas, N. & Gallagher, P. G. Human and murine erythropoiesis. Curr. Opin. Hematol. 22, 206–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Caielli, S. et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell 184, 4464–4479 e4419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, K. S. et al. Roles of PINK1, mTORC2, and mitochondria in preserving brain tumor-forming stem cells in a noncanonical Notch signaling pathway. Genes Dev. 27, 2642–2647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Perumalsamy, L. R., Nagala, M. & Sarin, A. Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival. Proc. Natl Acad. Sci. USA 107, 6882–6887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen, L. et al. Positive feedback loop between mitochondrial fission and Notch signaling promotes survivin-mediated survival of TNBC cells. Cell Death Dis. 9, 1050 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sarin, A. & Marcel, N. The NOTCH1-autophagy interaction: regulating self-eating for survival. Autophagy 13, 446–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Li, X. et al. Notch-Hes-1 axis controls TLR7-mediated autophagic death of macrophage via induction of P62 in mice with lupus. Cell Death Dis. 7, e2341–e2341 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, W., Xu, W. & Xiong, S. Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J. Immunol. 184, 6465–6478 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. & Green, D. R. The BCL-2 family reunion. Mol. Cell 37, 299–310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047–eaao6047 (2018).

    Article  PubMed  Google Scholar 

  131. Shakeri, R., Kheirollahi, A. & Davoodi, J. Apaf-1: regulation and function in cell death. Biochimie 135, 111–125 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Baliga, B. & Kumar, S. Apaf-1/cytochrome c apoptosome: an essential initiator of caspase activation or just a sideshow? Cell Death Differ. 10, 16–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, Q., Zhang, D., Hu, D., Zhou, X. & Zhou, Y. The role of mitochondria in NLRP3 inflammasome activation. Mol. Immunol. 103, 115–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460, 1035–1039 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baines, C. P. Role of the mitochondrion in programmed necrosis. Front. Physiol. 1, 156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sharapova, T. N. et al. Autoantibodies from SLE patients induce programmed cell death in murine fibroblast cells through interaction with TNFR1 receptor. Sci. Rep. 10, 11144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zeng, F. et al. Central role of RIPK1-VDAC1 pathway on cardiac impairment in a non-human primate model of rheumatoid arthritis. J. Mol. Cell Cardiol. 125, 50–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Bengtsson, A. A., Gullstrand, B., Truedsson, L. & Sturfelt, G. SLE serum induces classical caspase-dependent apoptosis independent of death receptors. Clin. Immunol. 126, 57–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Leishangthem, B. D., Sharma, A. & Bhatnagar, A. Role of altered mitochondria functions in the pathogenesis of systemic lupus erythematosus. Lupus 25, 272–281 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Zhou, S., Wen, H., Cai, W., Zhang, Y. & Li, H. Effect of hypoxia/reoxygenation on the biological effect of IGF system and the inflammatory mediators in cultured synoviocytes. Biochem. Biophys. Res. Commun. 508, 17–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Todkar, K. et al. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun. 12, 1971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Aarreberg, L. D. et al. Interleukin-1β induces mtDNA release to activate innate immune signaling via cGAS-STING. Mol. Cell 74, 801–815.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tigano, M., Vargas, D. C., Tremblay-Belzile, S., Fu, Y. & Sfeir, A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 591, 477–481 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560, 238–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Duvvuri, B. & Lood, C. Cell-Free DNA as a biomarker in autoimmune rheumatic diseases. Front. Immunol. 10, 502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hajizadeh, S., DeGroot, J., TeKoppele, J. M., Tarkowski, A. & Collins, L. V. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res. Ther. 5, R234–R240 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, H., Li, T., Chen, S., Gu, Y. & Ye, S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 67, 3190–3200 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Barrera, M.-J. et al. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: potential role in Sjögren’s syndrome. Autoimmun. Rev. 20, 102867 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Meng, X. et al. Circulating mitochondrial DNA is linked to progression and prognosis of epithelial ovarian cancer. Transl. Oncol. 12, 1213–1220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kohler, C. et al. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol. Cancer 8, 105–105 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gambardella, S. et al. ccf-mtDNA as a potential link between the brain and immune system in neuro-immunological disorders. Front. Immunol. 10, 1064 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lowes, H., Pyle, A., Duddy, M. & Hudson, G. Cell-free mitochondrial DNA in progressive multiple sclerosis. Mitochondrion 46, 307–312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lowes, H., Pyle, A., Santibanez-Koref, M. & Hudson, G. Circulating cell-free mitochondrial DNA levels in Parkinson’s disease are influenced by treatment. Mol. Neurodegener. 15, 10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pyle, A. et al. Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early-stage Parkinson’s disease. Ann. Neurol. 78, 1000–1004 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Alfatni, A. et al. Peripheral blood mononuclear cells and platelets mitochondrial dysfunction, oxidative stress, and circulating mtDNA in cardiovascular diseases. J. Clin. Med. 9, 311–311 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  163. Bae, J. H. et al. Circulating cell-free mtDNA contributes to AIM2 inflammasome-mediated chronic inflammation in patients with type 2 diabetes. Cells 8, 328–328 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  164. Catano Canizales, Y. G. et al. Increased levels of AIM2 and circulating mitochondrial DNA in type 2 diabetes. Iran. J. Immunol. 15, 142–155 (2018).

    PubMed  Google Scholar 

  165. Cossarizza, A. et al. Increased plasma levels of extracellular mitochondrial DNA during HIV infection: a new role for mitochondrial damage-associated molecular patterns during inflammation. Mitochondrion 11, 750–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Shi, Q. et al. Circulating mitochondrial biomarkers for drug-induced liver injury. Biomark. Med. 9, 1215–1223 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Simmons, J. D. et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann. Surg. 258, 591–596 (2013).

    Article  PubMed  Google Scholar 

  168. Chou, C. C. et al. Plasma nuclear DNA and mitochondrial DNA as prognostic markers in corrosive injury patients. Dig. Surg. 25, 300–304 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Kung, C. T. et al. Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J. Transl. Med. 10, 130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pinti, M. et al. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging.”. Eur. J. Immunol. 44, 1552–1562 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Trumpff, C. et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology 106, 268–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kageyama, Y. et al. The relationship between circulating mitochondrial DNA and inflammatory cytokines in patients with major depression. J. Affect. Disord. 233, 15–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Kruger, A. et al. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep. 16, 1656–1663 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Shi, H. X. et al. Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action. PLoS Pathog. 7, e1002057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Galper, J. B. Mitochondrial protein synthesis in HeLa cells. J. Cell Biol. 60, 755–763 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Migeotte, I., Communi, D. & Parmentier, M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor. Rev. 17, 501–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Becker, E. L. et al. Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell Tissue Res. 292, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Eggleton, P., Wang, L., Penhallow, J., Crawford, N. & Brown, K. A. Differences in oxidative response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis. Ann. Rheum. Dis. 54, 916–923 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. O’Flaherty, J. T., Rossi, A. G., Redman, J. F. & Jacobson, D. P. Tumor necrosis factor-α regulates expression of receptors for formyl-methionyl-leucyl-phenylalanine, leukotriene B4, and platelet-activating factor. Dissociation from priming in human polymorphonuclear neutrophils. J. Immunol. 147, 3842–3847 (1991).

    PubMed  Google Scholar 

  182. Mandal, P., Novotny, M. & Hamilton, T. A. Lipopolysaccharide induces formyl peptide receptor 1 gene expression in macrophages and neutrophils via transcriptional and posttranscriptional mechanisms. J. Immunol. 175, 6085–6091 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Hirotani, T. et al. Regulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-β. Biochem. Biophys. Res. Commun. 328, 383–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Gjertsson, I., Jonsson, I. M., Peschel, A., Tarkowski, A. & Lindholm, C. Formylated peptides are important virulence factors in Staphylococcus aureus arthritis in mice. J. Infect. Dis. 205, 305–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Duvvuri, B. et al. Mitochondrial N-formyl methionine peptides associate with disease activity as well as contribute to neutrophil activation in patients with rheumatoid arthritis. J. Autoimmun. 119, 102630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cai, N. et al. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat. Med. 27, 1564–1575 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Schlame, M., Rua, D. & Greenberg, M. L. The biosynthesis and functional role of cardiolipin. Prog. Lipid Res. 39, 257–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Arias-Cartin, R., Grimaldi, S., Arnoux, P., Guigliarelli, B. & Magalon, A. Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim. Biophys. Acta Bioenerg. 1817, 1937–1949 (2012).

    Article  CAS  Google Scholar 

  189. Arechaga, I. Membrane invaginations in bacteria and mitochondria: common features and evolutionary scenarios. J. Mol. Microbiol. Biotechnol. 23, 13–23 (2013).

    CAS  PubMed  Google Scholar 

  190. Cogliati, S., Enriquez, J. A. & Scorrano, L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem. Sci. 41, 261–273 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Ban, T. et al. Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19, 856–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Bustillo-Zabalbeitia, I. et al. Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS One 9, e102738 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Schlame, M. & Ren, M. The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim. Biophys. Acta 1788, 2080–2083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Muenzner, J. & Pletneva, E. V. Structural transformations of cytochrome c upon interaction with cardiolipin. Chem. Phys. Lipids 179, 57–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Vikerfors, A. et al. Clinical manifestations and anti-phospholipid antibodies in 712 patients with systemic lupus erythematosus: evaluation of two diagnostic assays. Rheumatology 52, 501–509 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Vitiello, L., Gorini, S., Rosano, G. & la Sala, A. Immunoregulation through extracellular nucleotides. Blood 120, 511–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  197. North, R. A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Karmakar, M., Katsnelson, M. A., Dubyak, G. R. & Pearlman, E. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat. Commun. 7, 10555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Seiffert, K., Ding, W., Wagner, J. A. & Granstein, R. D. ATPγS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling. J. Invest. Dermatol. 126, 1017–1027 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Tripathy, A., Padhan, P., Swain, N., Raghav, S. K. & Gupta, B. Increased extracellular ATP in plasma of rheumatoid arthritis patients activates CD8+ T cells. Arch. Med. Res. 52, 423–433 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Furini, F. et al. P2X7 receptor expression in patients with serositis related to systemic lupus erythematosus. Front. Pharmacol. 10, 435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Le Gall, S. M. et al. Loss of P2X7 receptor plasma membrane expression and function in pathogenic B220+ double-negative T lymphocytes of autoimmune MRL/lpr mice. PLoS One 7, e52161 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Perera, L. M. B. et al. The regulation of skin fibrosis in systemic sclerosis by extracellular ATP via P2Y2 purinergic receptor. J. Invest. Dermatol. 139, 890–899 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Adachi, N. et al. Serum cytochrome c level as a prognostic indicator in patients with systemic inflammatory response syndrome. Clin. Chim. Acta 342, 127–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. Shirai, R., Hirano, F., Ohkura, N., Ikeda, K. & Inoue, S. Up-regulation of the expression of leucine-rich α2-glycoprotein in hepatocytes by the mediators of acute-phase response. Biochem. Biophys. Res. Commun. 382, 776–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Druhan, L. J. et al. Leucine rich α-2 glycoprotein: a novel neutrophil granule protein and modulator of myelopoiesis. PLoS One 12, e0170261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Pullerits, R., Bokarewa, M., Jonsson, I. M., Verdrengh, M. & Tarkowski, A. Extracellular cytochrome c, a mitochondrial apoptosis-related protein, induces arthritis. Rheumatology 44, 32–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  209. Mamula, M. J., Jemmerson, R. & Hardin, J. A. The specificity of human anti-cytochrome c autoantibodies that arise in autoimmune disease. J. Immunol. 144, 1835–1840 (1990).

    CAS  PubMed  Google Scholar 

  210. Chimenti, M. S. et al. Potential role of cytochrome c and tryptase in psoriasis and psoriatic arthritis pathogenesis: focus on resistance to apoptosis and oxidative stress. Front. Immunol. https://doi.org/10.3389/fimmu.2018.02363 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Davis, M. A. et al. Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proc. Natl Acad. Sci. USA 116, 5061–5070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Maeda, A. & Fadeel, B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis. 5, e1312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Cloutier, N. et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol. Med. 5, 235–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Melki, I. et al. Platelets release mitochondrial antigens in systemic lupus erythematosus. Sci. Transl. Med. 13, eaav5928–eaav5928 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124, 2173–2183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Fortin, P. R. et al. Distinct subtypes of microparticle-containing immune complexes are associated with disease activity, damage, and carotid intima-media thickness in systemic lupus erythematosus. J. Rheumatol. 43, 2019–2025 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Mobarrez, F. et al. Microparticles in the blood of patients with systemic lupus erythematosus (SLE): phenotypic characterization and clinical associations. Sci. Rep. 6, 36025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mobarrez, F. et al. Microparticles in the blood of patients with SLE: size, content of mitochondria and role in circulating immune complexes. J. Autoimmun. 102, 142–149 (2019).

    Article  CAS  PubMed  Google Scholar 

  219. Puhm, F. et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ. Res. 125, 43–52 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Bell, C. et al. Quantitative proteomics reveals the induction of mitophagy in tumor necrosis factor-α-activated (TNFα) macrophages. Mol. Cell Proteom. 12, 2394–2407 (2013).

    Article  CAS  Google Scholar 

  221. Matheoud, D. et al. Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation. Cell 166, 314–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Dabhi, V. M. & Lindahl, K. F. Short peptides sensitize target cells to CTL specific for the MHC class Ib molecule, H2-M3. Eur. J. Immunol. 28, 3773–3782 (1998).

    Article  CAS  PubMed  Google Scholar 

  223. Singh, R. R., Yang, J. Q., Kim, P. J. & Halder, R. C. Germline deletion of β2 microglobulin or CD1d reduces anti-phospholipid antibody, but increases autoantibodies against non-phospholipid antigens in the NZB/W F1 model of lupus. Arthritis Res. Ther. 15, R47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dieudé, M. et al. Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire. J. Immunol. 186, 4771–4781 (2011).

    Article  PubMed  Google Scholar 

  225. Christianson, G. J. et al. β2-microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J. Immunol. 159, 4781–4792 (1997).

    CAS  PubMed  Google Scholar 

  226. Qi, L., Rojas, J. M. & Ostrand-Rosenberg, S. Tumor cells present MHC class II-restricted nuclear and mitochondrial antigens and are the predominant antigen presenting cells in vivo. J. Immunol. 165, 5451–5461 (2000).

    Article  CAS  PubMed  Google Scholar 

  227. Baum, H. Mitochondrial antigens, molecular mimicry and autoimmune disease. Biochim. Biophys. Acta 1271, 111–121 (1995).

    Article  PubMed  Google Scholar 

  228. Odin, J. A., Huebert, R. C., Casciola-Rosen, L., LaRusso, N. F. & Rosen, A. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J. Clin. Invest. 108, 223–232 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Berg, P. A. & Klein, R. Mitochondrial antigens and autoantibodies: from anti-M1 to anti-M9. Klin. Wochenschr. 64, 897–909 (1986).

    Article  CAS  PubMed  Google Scholar 

  230. Becker, Y. et al. Anti-mitochondrial autoantibodies in systemic lupus erythematosus and their association with disease manifestations. Sci. Rep. 9, 4530 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Becker, Y. et al. Autoantibodies in systemic lupus erythematosus target mitochondrial RNA. Front. Immunol. 10, 1026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Bowlus, C. L. & Gershwin, M. E. The diagnosis of primary biliary cirrhosis. Autoimmun. Rev. 13, 441–444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tomizawa, M. et al. Anti-mitochondrial M2 antibody-positive autoimmune hepatitis. Exp. Ther. Med. 10, 1419–1422 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Klein, R. & Berg, P. A. Anti-M4 antibodies in primary biliary cirrhosis react with sulphite oxidase, an enzyme of the mitochondrial inter-membrane space. Clin. Exp. Immunol. 84, 445–448 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Berg, P. A., Wiedmann, K. H., Sayers, T., Klöppel, G. & Lindner, H. Serological classification of chronic cholestatic liver disease by the use of two different types of antimitochondrial antibodies. Lancet 2, 1329–1332 (1980).

    Article  CAS  PubMed  Google Scholar 

  236. Bunn, C. C. & McMorrow, M. Anti-M4 antibodies measured by a sulphite oxidase ELISA in patients with both anti-centromere and anti-M2 antibodies. Clin. Exp. Immunol. 102, 131–136 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Berg, P. A. & Klein, R. Mitochondrial antigen/antibody systems in primary biliary cirrhosis: revisited. Liver 15, 281–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  238. Weber, P., Brenner, J. & Stechemesser, E. Characterization and clinical relevance of a new complement-fixing antibody — anti-M8 — in patients with primary biliary cirrhosis. Hepatology 6, 553–559 (1986).

    Article  CAS  PubMed  Google Scholar 

  239. Fujikura, S. et al. Sjögren’s syndrome and primary biliary cirrhosis: presence of autoantibodies to purified mitochondrial 2-OXO acid dehydrogenases. J. Rheumatol. 17, 1453–1457 (1990).

    CAS  PubMed  Google Scholar 

  240. Skopouli, F. N., Barbatis, C. & Moutsopoulos, H. M. Liver involvement in primary Sjögren’s syndrome. Br. J. Rheumatol. 33, 745–748 (1994).

    Article  CAS  PubMed  Google Scholar 

  241. Selmi, C., Meroni, P. L. & Gershwin, M. E. Primary biliary cirrhosis and Sjögren’s syndrome: autoimmune epithelitis. J. Autoimmun. 39, 34–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  242. Sayers, T. J., Binder, T. & Berg, P. A. Heterogeneity of anti-mitochondrial antibodies: characterization and separation of the antigen associated with the pseudolupus erythematosus syndrome. Clin. Exp. Immunol. 37, 68–75 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Homberg, J. C. et al. A new antimitochondria antibody (anti-M6) in iproniazid-induced hepatitis. Clin. Exp. Immunol. 47, 93–102 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Klein, R., Maisch, B., Kochsiek, K. & Berg, P. A. Demonstration of organ specific antibodies against heart mitochondria (anti-M7) in sera from patients with some forms of heart diseases. Clin. Exp. Immunol. 58, 283–292 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Cicek, G., Schiltz, E., Hess, D., Staiger, J. & Brandsch, R. Analysis of mitochondrial antigens reveals inner membrane succinate dehydrogenase flavoprotein subunit as autoantigen to antibodies in anti-M7 sera. Clin. Exp. Immunol. 128, 83–87 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Otto, A. et al. Anti-mitochondrial antibodies in patients with dilated cardiomyopathy (anti-M7) are directed against flavoenzymes with covalently bound FAD. Clin. Exp. Immunol. 111, 541–547 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Stahle, I., Brizzio, C., Barile, M. & Brandsch, R. Anti-mitochondrial flavoprotein autoantibodies of patients with myocarditis and dilated cardiomyopathy (anti-M7): interaction with flavin-carrying proteins, effect of vitamin B2 and epitope mapping. Clin. Exp. Immunol. 115, 404–408 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Rauch, J., Tannenbaum, H., Stollar, B. D. & Schwartz, R. S. Monoclonal anti-cardiolipin antibodies bind to DNA. Eur. J. Immunol. 14, 529–534 (1984).

    Article  CAS  PubMed  Google Scholar 

  249. Oaks, Z. et al. Mitochondrial dysfunction in the liver and antiphospholipid antibody production precede disease onset and respond to rapamycin in lupus-prone mice. Arthritis Rheumatol. 68, 2728–2739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. McNeil, H. P., Simpson, R. J., Chesterman, C. N. & Krilis, S. A. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: β2-glycoprotein I (apolipoprotein H). Proc. Natl Acad. Sci. USA 87, 4120–4124 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Aringer, M. et al. European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 78, 1151–1159 (2019).

    Google Scholar 

  252. Miyakis, S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 4, 295–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  253. Vreede, A. P., Bockenstedt, P. L. & Knight, J. S. Antiphospholipid syndrome: an update for clinicians and scientists. Curr. Opin. Rheumatol. 29, 458–466 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Labro, M. T., Andrieu, M. C., Weber, M. & Homberg, J. C. A new pattern of non-organ- and non-species-specific anti-organelle antibody detected by immunofluorescence: the mitochondrial antibody number 5. Clin. Exp. Immunol. 31, 357–366 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. La Rosa, L. et al. Anti-mitochondrial M5 type antibody represents one of the serological markers for anti-phospholipid syndrome distinct from anti-cardiolipin and anti-β2-glycoprotein I antibodies. Clin. Exp. Immunol. 112, 144–151 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Desamparados, O.-M., Sanchez-Ramón, S., Rodriguez-Mahou, M., Alvarez, S. & Fernández-Cruz, E. Isolated type 5 antimitochondrial autoantibodies are associated with a history of thrombocytopenia and fetal loss. Fertil. Steril. 87, 917–976 (2007).

    Google Scholar 

  257. Canaud, G. et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N. Engl. J. Med. 371, 303–312 (2014).

    Article  PubMed  Google Scholar 

  258. Canaud, G., Legendre, C. & Terzi, F. AKT/mTORC pathway in antiphospholipid-related vasculopathy: a new player in the game. Lupus 24, 227–230 (2015).

    Article  CAS  PubMed  Google Scholar 

  259. Suto, T. & Karonitsch, T. The immunobiology of mTOR in autoimmunity. J. Autoimmun. 110, 102373 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Lai, Z. W. et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet 391, 1186–1196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Becker, Y. L., Julien, A. S., Godbout, A., Boilard, E. & Fortin, P. R. Pilot study of anti-mitochondrial antibodies in antiphospholipid syndrome. Lupus 29, 1623–1629 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Pisetsky, D. S. et al. The binding of SLE autoantibodies to mitochondria. Clin. Immunol. 212, 108349 (2020).

    Article  CAS  PubMed  Google Scholar 

  263. Mahler, M., Fritzler, M. J. & Satoh, M. Autoantibodies to the mitochondrial RNA processing (MRP) complex also known as Th/To autoantigen. Autoimmun. Rev. 14, 254–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Alard, J.-E. et al. Autoantibodies to endothelial cell surface ATP synthase, the endogenous receptor for hsp60, might play a pathogenic role in vasculatides. PLoS One 6, e14654–e14654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Dieudé, M. et al. Autoantibodies to heat shock protein 60 promote thrombus formation in a murine model of arterial thrombosis. J. Thromb. Haemost. 7, 710–719 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Becker, Y. L. et al. Identification of mitofusin 1 and complement component 1q subcomponent-binding protein as mitochondrial targets in systemic lupus erythematosus. Arthritis Rheumatol. https://doi.org/10.1002/art.42082 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Berg, P. A. & Klein, R. Antimitochondrial antibodies in primary biliary cirrhosis and other disorders: definition and clinical relevance. Dig. Dis. 10, 85–101 (1992).

    Article  CAS  PubMed  Google Scholar 

  268. Czompoly, T. et al. Detailed analyses of antibodies recognizing mitochondrial antigens suggest similar or identical mechanism for production of natural antibodies and natural autoantibodies. Autoimmun. Rev. 7, 463–467 (2008).

    Article  CAS  PubMed  Google Scholar 

  269. Frostegård, A. G. et al. Immunoglobulin (Ig)M antibodies against oxidized cardiolipin but not native cardiolipin are novel biomarkers in haemodialysis patients, associated negatively with mortality. Clin. Exp. Immunol. 174, 441–448 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Yunis, E. J., Zuniga, J., Romero, V. & Yunis, E. J. Chimerism and tetragametic chimerism in humans: implications in autoimmunity, allorecognition and tolerance. Immunol. Res. 38, 213–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  271. Tang, Y. et al. Association of mtDNA M/N haplogroups with systemic lupus erythematosus: a case-control study of Han Chinese women. Sci. Rep. 5, 10817 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Teng, Y. et al. Mitochondrial DNA genetic variants are associated with systemic lupus erythematosus susceptibility, glucocorticoids efficacy and prognosis. Rheumatology, (2021).

  273. Tokarska, K., Majsterek, I., Cuchra, M. & Wozniacka, A. Immunometabolic disorders in the pathogenesis of systemic lupus erythematosus. Postepy Dermatol. Alergol. 36, 513–518 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Weyand, C. M. & Goronzy, J. J. Immunometabolism in the development of rheumatoid arthritis. Immunol. Rev. 294, 177–187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Kane, H. & Lynch, L. Innate immune control of adipose tissue homeostasis. Trends Immunol. 40, 857–872 (2019).

    Article  CAS  PubMed  Google Scholar 

  276. Pisetsky, D. S., Gauley, J. & Ullal, A. J. Microparticles as a source of extracellular DNA. Immunol. Res. 49, 227–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Marcoux, G. et al. Microparticle and mitochondrial release during extended storage of different types of platelet concentrates. Platelets 28, 272–280 (2017).

    Article  CAS  PubMed  Google Scholar 

  279. Davis, C. H. et al. Transcellular degradation of axonal mitochondria. Proc. Natl Acad. Sci. USA 111, 9633–9638 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Liu, D. et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal. Transduct. Target. Ther. 6, 65 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Sinha, P., Islam, M. N., Bhattacharya, S. & Bhattacharya, J. Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Curr. Opin. Genet. Dev. 38, 97–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Torralba, D., Baixauli, F. & Sanchez-Madrid, F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4, 107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  284. Miliotis, S., Nicolalde, B., Ortega, M., Yepez, J. & Caicedo, A. Forms of extracellular mitochondria and their impact in health. Mitochondrion 48, 16–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  285. Golan, K. et al. Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood 136, 2607–2619 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Wu, T. H. et al. Mitochondrial transfer by photothermal nanoblade restores metabolite profile in mammalian cells. Cell Metab. 23, 921–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Rogers, R. S. & Bhattacharya, J. When cells become organelle donors. Physiology 28, 414–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  288. Wu, B. et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat. Immunol. 22, 1551–1562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.L.C.B. is supported by a fellowship from the Fonds de Recherche du Québec en Santé (FRQS). P.R.F. holds the tier 1 Canada Research Chair in Systemic Autoimmune Rheumatic Diseases. C.L. is supported by awards from the NIH (1 R21 AR077565, 1 R21 AR079542 and 1 R01 HL158606). E.B. is supported by a senior award from the FRQS.

Author information

Authors and Affiliations

Authors

Contributions

E.B., Y.L.C.B., B.D. and C.L. researched data for the article and wrote the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Christian Lood or Eric Boilard.

Ethics declarations

Competing interests

Y.L.C.B., P.R.F. and E.B. have filed a provisional patent regarding kits to detect anti-mitochondrial antibodies in systemic lupus erythematosus. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks F. Blanco, A. Perl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endosymbiotic hypothesis

A hypothesis stating that mitochondria originate from the symbiosis between a primitive eukaryote and a bacterium.

Neutrophil extracellular trap (NET) formation

An immune mechanism in which activated neutrophils release a reticular structure comprising nucleic acids and proteins intended to trap pathogens.

Waste disposal hypothesis

A hypothesis stating that complement-mediated elimination of apoptotic debris helps to prevent autoimmune response to self-antigens.

Spare respiratory capacity

The quantity of extra ATP that might be produced by mitochondria, indicating the bioenergetic fitness of cells to withstand conditions of high-energy demand such as antigenic challenge or stress.

Mitophagy

A pathway derived from autophagy, dedicated to the degradation of damaged or supernumerary mitochondria.

Mitochondrial fusion

The merging of two organelles into one single mitochondrion.

Mitochondrial fission

The scission of one mother mitochondrion into two daughter mitochondria.

Megamitochondria

An abnormally large mitochondrion, associated with oxidative stress and apoptosis.

Necroptosis

A programmed form of cell death by necrosis that, unlike apoptosis, elicits pro-inflammatory reactions.

Necrosis

A form of cell death, associated with the pro-inflammatory release of cytosolic content into the extracellular space.

Pyroptosis

A pro-inflammatory type of programmed cell death.

Transmitophagy

Cell-to-cell transmission of mitochondria.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, Y.L.C., Duvvuri, B., Fortin, P.R. et al. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 18, 621–640 (2022). https://doi.org/10.1038/s41584-022-00834-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00834-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing