Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A break in mitochondrial endosymbiosis as a basis for inflammatory diseases

Abstract

Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered ‘the enemy within’ the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways of molecular signal release from mitochondria.
Fig. 2: How breakdown in endosymbiosis can lead to inflammation.
Fig. 3: Did nucleic acid-sensing PRRs evolve to sense mitochondrial nucleic acids?

Similar content being viewed by others

References

  1. Murphy, M. P. & Hartley, R. C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov. 17, 865–886 (2018). The many pathogical roles of mitochondria are discussed.

    Article  CAS  PubMed  Google Scholar 

  2. Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015). The key signalling roles of mitochondria are discussed in an evolutionary context.

    Article  CAS  PubMed  Google Scholar 

  3. Picard, M. & Shirihai, O. S. Mitochondrial signal transduction. Cell Metab. 34, 1620–1653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monzel, A. S., Enriquez, J. A. & Picard, M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat. Metab. 5, 546–562 (2023). A recent review that highlights the many emerging facets of mitochondrial biology.

    Article  PubMed  Google Scholar 

  5. Tait, S. W. & Green, D. R. Mitochondria and cell signalling. J. Cell Sci. 125, 807–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bahat, A., MacVicar, T. & Langer, T. Metabolism and innate immunity meet at the mitochondria. Front. Cell Dev. Biol. 9, 720490 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marchi, S., Guilbaud, E., Tait, S. W. G., Yamazaki, T. & Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 23, 159–173 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Wein, T. & Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat. Rev. Immunol. 22, 629–638 (2022). Here the authors suggest how the origins of mitochondria can lead to innate immunity mechanisms.

    Article  CAS  PubMed  Google Scholar 

  9. Krysko, D. V. et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 32, 157–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan, G. G. & Windsor, J. W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 18, 56–66 (2021).

    Article  PubMed  Google Scholar 

  12. Dinse, G. E. et al. Increasing prevalence of antinuclear antibodies in the United States. Arthritis Rheumatol. 72, 1026–1035 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, R., Li, Z., Liu, S. & Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 13, e065186 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Duarte-Garcia, A. et al. Rising incidence and prevalence of systemic lupus erythematosus: a population-based study over four decades. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2022-222276 (2022).

    Article  PubMed  Google Scholar 

  15. Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shi, G. et al. Estimation of the global prevalence, incidence, years lived with disability of rheumatoid arthritis in 2019 and forecasted incidence in 2040: results from the Global Burden of Disease Study 2019. Clin. Rheumatol. 42, 2297–2309 (2023).

    Article  PubMed  Google Scholar 

  17. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019). An excellent account of how chronic inflammation changes as we age and how environmental factors impact on inflammatory diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gontier, N. in Encyclopedia of Evolutionary Biology Vol. 4 (ed. Kliman, R. M.) 261–271 (Elsevier, 2016).

  19. Garg, S., Zimorski, V. & Martin, W. F. in Encyclopedia of Evolutionary Biology Vol. 1 (ed. Kliman, R. M.) 511–517 (Elsevier, 2016).

  20. Dacks, J. B. et al. The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695–3703 (2016).

    CAS  PubMed  Google Scholar 

  21. Roger, A. J., Munoz-Gomez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–274 (1967). A classic paper that led to the acceptance of endosymbiosis as the origin of mitochondria.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Martin, W. F. & Mentel, M. The origin of mitochondria. Nat. Educ. 3, 58 (2010).

    Google Scholar 

  25. John, P. & Whatley, F. R. Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254, 495–498 (1975).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Geiger, O., Sanchez-Flores, A., Padilla-Gomez, J. & Degli Esposti, M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. Sci. Adv. 9, eadh0066 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Raval, P. K., Martin, W. F. & Gould, S. B. Mitochondrial evolution: gene shuffling, endosymbiosis, and signaling. Sci. Adv. 9, eadj4493 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

    Article  PubMed  Google Scholar 

  31. Gustafsson, C. M., Falkenberg, M. & Larsson, N. G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Morgenstern, M. et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab. 33, 2464–2483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gross, J. & Bhattacharya, D. Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat. Rev. Genet. 10, 495–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Paschen, S. A., Neupert, W. & Rapaport, D. Biogenesis of beta-barrel membrane proteins of mitochondria. Trends Biochem. Sci. 30, 575–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Gross, A. et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while Bcl-Xl prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, X. S., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. D. Induction of apoptotic program in cell-free extracts – requirement for datp and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25, 46–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Suhaili, S. H., Karimian, H., Stellato, M., Lee, T. H. & Aguilar, M. I. Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization. Biophys. Rev. 9, 443–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He, B. et al. Mitochondrial cristae architecture protects against mtDNA release and inflammation. Cell Rep. 41, 111774 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ott, M., Zhivotovsky, B. & Orrenius, S. Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ. 14, 1243–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Munoz-Gomez, S. A., Slamovits, C. H., Dacks, J. B. & Wideman, J. G. The evolution of MICOS: ancestral and derived functions and interactions. Commun. Integr. Biol. 8, e1094593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Friedman, J. R., Mourier, A., Yamada, J., McCaffery, J. M. & Nunnari, J. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife 4, e07739 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bernardi, P. & Di Lisa, F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J. Mol. Cell. Cardiol. 78, 100–106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scarlett, J. L. & Murphy, M. P. Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Lett. 418, 282–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Bernardi, P. et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 30, 1869–1885 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, B. et al. CpG methylation patterns of human mitochondrial DNA. Sci. Rep. 6, 23421 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Riley, J. S. & Tait, S. W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 21, e49799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J., Kim, H. S. & Chung, J. H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp. Mol. Med. 55, 510–519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, 6378 (2018). First description of a role for BAK/BAX and mitochondrial herniation in the release of mtDNA.

  53. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019). Evidence for oxidized mtDNA as an activator of the NLRP3 inflammasome.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Xian, H. et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55, 1370–1385 (2022). Evidence for oxidized mtDNA as an activator of the NLRP3 inflammasome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mills, E. L., Kelly, B. & O’Neill, L. A. J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488–498 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Billingham, L. K. et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat. Immunol. 23, 692–704 (2022). Evidence that mitochondrial phosphocreatine generated from ATP derived from oxidative phosphorylation is required for ATP production in the cytosol by creatine kinase B, for NLRP3 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chowdhury, A., Witte, S. & Aich, A. Role of mitochondrial nucleic acid sensing pathways in health and patho-physiology. Front. Cell Dev. Biol. 10, 796066 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, F., Zhang, D., Zhang, D., Li, P. & Gao, Y. Mitochondrial protein translation: emerging roles and clinical significance in disease. Front. Cell Dev. Biol. 9, 675465 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Walker, J. E., Carroll, J., Altman, M. C. & Fearnley, I. M. Chapter 6 mass spectrometric characterization of the thirteen subunits of bovine respiratory complexes that are encoded in mitochondrial DNA. Methods Enzymol. 456, 111–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Le, Y., Murphy, P. M. & Wang, J. M. Formyl-peptide receptors revisited. Trends Immunol. 23, 541–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Dorward, D. A. et al. Novel role for endogenous mitochondrial formylated peptide-driven formyl peptide receptor 1 signalling in acute respiratory distress syndrome. Thorax 72, 928–936 (2017).

    Article  PubMed  Google Scholar 

  64. Cai, N. et al. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat. Med. 27, 1564–1575 (2021). A fascinating report linking mitochondrial N-formylmethionine formation and pathology.

    Article  CAS  PubMed  Google Scholar 

  65. Paradies, G., Paradies, V., Ruggiero, F. M. & Petrosillo, G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells 8, 728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pizzuto, M. & Pelegrin, P. Cardiolipin in immune signaling and cell death. Trends Cell Biol. 30, 892–903 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5, 90 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  68. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J 417, 1–13 (2009). An overview of how mitochondrial redox signals may be generated.

    Article  CAS  PubMed  Google Scholar 

  71. Wong, H. S., Dighe, P. A., Mezera, V., Monternier, P. A. & Brand, M. D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 292, 16804–16809 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Robb, E. L. et al. Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 293, 9869–9879 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wright, J. J. et al. Reverse electron transfer by respiratory complex I catalyzed in a modular proteoliposome system. J. Am. Chem. Soc. 144, 6791–6801 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roca, F. J., Whitworth, L. J., Prag, H. A., Murphy, M. P. & Ramakrishnan, L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science. 376, eabh2841 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murphy, M. P. & Chouchani, E. T. Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 18, 461–469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016). This paper describes how mitochondrial metabolism can be repurposed to generate succinate as a signal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Christman, M. F., Storz, G. & Ames, B. N. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc. Natl Acad. Sci. USA 86, 3484–3488 (1989).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Redza-Dutordoir, M. & Averill-Bates, D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 1863, 2977–2992 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  82. Ryan, D. G. et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat. Metab. 1, 16–33 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013). Evidence for macrophage-derived succinate being a pro-inflammatory signal.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85 (2005). A key paper linking succinate to HIF1-alpha activation.

    Article  CAS  PubMed  Google Scholar 

  88. Matilainen, O., Quiros, P. M. & Auwerx, J. Mitochondria and epigenetics – crosstalk in homeostasis and stress. Trends Cell Biol. 27, 453–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Santos, J. H. Mitochondria signaling to the epigenome: a novel role for an old organelle. Free Radic. Biol. Med. 170, 59–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Day, E. A. & O’Neill, L. A. J. Protein targeting by the itaconate family in immunity and inflammation. Biochem. J. 479, 2499–2510 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. McGettrick, A. F. & O’Neill, L. A. Two for the price of one: itaconate and its derivatives as an anti-infective and anti-inflammatory immunometabolite. Curr. Opin. Immunol. 80, 102268 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  94. Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. DeBerardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129 (2020).

    Article  PubMed  Google Scholar 

  96. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  97. Martinez-Reyes, I. et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585, 288–292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frenkel-Pinter, M. et al. Adaptation and exaptation: from small molecules to feathers. J. Mol. Evol. 90, 166–175 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. Jarman, O. D., Biner, O., Wright, J. J. & Hirst, J. Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I. Sci. Rep. 11, 10143 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Henry, M. F. & Vignais, P. M. Production of superoxide anions in Paracoccus denitrificans. Arch. Biochem. Biophys. 203, 365–371 (1980).

    Article  CAS  PubMed  Google Scholar 

  102. Kotlyar, A. B. & Borovok, N. NADH oxidation and NAD+ reduction catalysed by tightly coupled inside-out vesicles from Paracoccus denitrificans. Eur. J. Biochem. 269, 4020–4024 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Hong, Y., Zeng, J., Wang, X., Drlica, K. & Zhao, X. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl Acad. Sci. USA 116, 10064–10071 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  104. Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Toyofuku, M., Schild, S., Kaparakis-Liaskos, M. & Eberl, L. Composition and functions of bacterial membrane vesicles. Nat. Rev. Microbiol. 21, 415–430 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  107. Georjon, H. & Bernheim, A. The highly diverse antiphage defence systems of bacteria. Nat. Rev. Microbiol. 21, 686–700 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Li, Y. et al. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Cell 186, 3261–3276 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Wu, X. et al. Phylogenetic and molecular evolutionary analysis of mitophagy receptors under hypoxic conditions. Front. Physiol. 8, 539 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Moriyama, M., Koshiba, T. & Ichinohe, T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat. Commun. 10, 4624 (2019). A role for mitochondrial DNA in the induction of anti-viral immunity in response to an RNA virus (influenza).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  112. Jahun, A. S. et al. Leaked genomic and mitochondrial DNA contribute to the host response to noroviruses in a STING-dependent manner. Cell Rep. 42, 112179 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Sun, B. et al. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci. Rep. 7, 3594 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  114. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Colaco, C. B., Scadding, G. K. & Lockhart, S. Anti-cardiolipin antibodies in neurological disorders: cross-reaction with anti-single stranded DNA activity. Clin. Exp. Immunol. 68, 313–319 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Colapietro, F., Lleo, A. & Generali, E. Antimitochondrial antibodies: from bench to bedside. Clin. Rev. Allergy Immunol. 63, 166–177 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Chen, P. M. & Tsokos, G. C. Mitochondria in the pathogenesis of systemic lupus erythematosus. Curr. Rheumatol. Rep. 24, 88–95 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Becker, Y. et al. Autoantibodies in systemic lupus erythematosus target mitochondrial RNA. Front. Immunol. 10, 1026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Littlewood-Evans, A. et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  122. Hooftman, A. et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 615, 490–498 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  123. Zecchini, V. et al. Fumarate induces vesicular release of mtDNA to drive innate immunity. Nature 615, 499–506 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  124. Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  125. Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  126. Lopez-Domenech, G. et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37, 321–336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Debattisti, V., Gerencser, A. A., Saotome, M., Das, S. & Hajnoczky, G. ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep. 21, 1667–1680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Croon, M. et al. FGF21 modulates mitochondrial stress response in cardiomyocytes only under mild mitochondrial dysfunction. Sci. Adv. 8, eabn7105 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Campello, S. et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203, 2879–2886 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Grafstein, B. & Forman, D. S. Intracellular transport in neurons. Physiol. Rev. 60, 1167–1283 (1980).

    Article  CAS  PubMed  Google Scholar 

  132. Eisner, V., Picard, M. & Hajnoczky, G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 20, 755–765 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. USA 103, 1283–1288 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science. 303, 1007–1010 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  135. Liu, D. et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target Ther. 6, 65 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Liu, Z., Sun, Y., Qi, Z., Cao, L. & Ding, S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 12, 66 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dong, L. F. et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife 6, e22187 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. McCully, J. D., Levitsky, S., Del Nido, P. J. & Cowan, D. B. Mitochondrial transplantation for therapeutic use. Clin. Transl. Med. 5, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hayashida, K. et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. J. Transl. Med. 19, 214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sardon Puig, L., Valera-Alberni, M., Canto, C. & Pillon, N. J. Circadian rhythms and mitochondria: connecting the dots. Front. Genet. 9, 452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chang, E. M., Chao, C. C., Wang, M. T., Hsu, C. L. & Chen, P. C. PM(2.5) promotes pulmonary fibrosis by mitochondrial dysfunction. Environ. Toxicol. 38, 1905–1913 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  142. Gioscia-Ryan, R. A. et al. Lifelong voluntary aerobic exercise prevents age- and Western diet- induced vascular dysfunction, mitochondrial oxidative stress and inflammation in mice. J. Physiol. 599, 911–925 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. L. Mills, D. G. Ryan and H. A. Prag for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the writing of the manuscript.

Corresponding authors

Correspondence to Michael P. Murphy or Luke A. J. O’Neill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Navdeep Chandel, Zhijian (James) Chen, Luca Scorrano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, M.P., O’Neill, L.A.J. A break in mitochondrial endosymbiosis as a basis for inflammatory diseases. Nature 626, 271–279 (2024). https://doi.org/10.1038/s41586-023-06866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06866-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing