Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Clinical Research
  • Published:

Characterization of prostate cancer adrenal metastases: dependence upon androgen receptor signaling and steroid hormones

Abstract

Background

Prostate cancer (PCa) typically spreads to the bone, and this distribution is attributed to the central role of the microenvironment in progression. However, metastasis to the adrenal glands, while not as common, does occur. The biology that accounts for adrenal metastases may be attributed to the unique local steroid metabolome and co-clinical characterization may elucidate the role steroid biosynthesis plays in PCa progression.

Methods

Three patients with metastatic PCa who had archived tumor tissue from an adrenalectomy were retrospectively identified, and one adrenal metastasis was developed into a xenograft (MDA-PCa-250). The adrenal metastases were characterized by performing somatic DNA whole exome sequencing (WES), RNA-Seq, immunohistochemistry (IHC), and steroid metabolite quantitation. The influence of steroid metabolites on adrenal metastasis cells and tumor growth was tested in vitro and in vivo.

Results

Clinically, adrenalectomy was performed during castration-resistant oligometastatic disease, and two men experienced resensitization to leuprolide. Somatic DNA WES revealed heterogeneous alterations in tumor suppressor and DNA damage repair pathway genes. Adrenal metastases had active androgen receptor (AR) signaling by IHC, and RNA-Seq supported a potential role for adrenal androgen precursor metabolism in activating the AR. Steroid quantitation suggested the adrenal androgen precursors were converted into testosterone in these metastases, and stable isotope tracing of an organoid from MDA-PCa-250 confirmed the capability of adrenal metastases to biosynthesize testosterone from adrenal precursors. In vitro testing of a cell line derived from MDA-PCa-250 showed that testosterone and cortisol stimulated tumor cell growth. In vivo experiments demonstrated that MDA-PCa-250 grew in intact mice with circulating testosterone, but not in castrated mice.

Conclusions

PCa adrenal metastases depend upon AR signaling driven by androgen precursors, androstenedione and dehydroepiandrosterone, available in the microenvironment, despite the presence of heterogeneous somatic DNA alterations. Moreover, MDA-PCa-250 provides a preclinical model that can recapitulate the unique androgen-dependence of adrenal metastases.

Clinical trial registration

This study does not report the clinical results of a clinical trial, but it does use samples from a completed clinical trial that is registered with clinicaltrials.gov (NCT01254864).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Steroid metabolite measurements from prostate cancer adrenal metastases and controls.
Fig. 2: The effect of testosterone and cortisol on proliferation of MDA-PCa-250.
Fig. 3: Growth curves of a patient-derived xenograft of a prostate cancer adrenal metastasis (MDA-PCa-250) in castrated and hormonally intact mice.

Similar content being viewed by others

Data availability

Data is available to any reader upon request. Please email the corresponding author to request the data.

References

  1. Weiss L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis. 1992;10:191–9.

    Article  CAS  PubMed  Google Scholar 

  2. Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, et al. Distribution of metastatic sites in patients with prostate cancer: A population-based analysis. Prostate 2014;74:210–6.

    Article  PubMed  Google Scholar 

  3. Ashrafi AN, Fay C, Yip W, de Freitas DM, Nabhani J, Aron M. Durable biochemical response following adrenal metastasectomy for oligometastatic castrate-resistant prostate cancer. Urol Case Rep. 2020;32:101229.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rubin MA, Putzi M, Mucci N, Smith DC, Wojno K, Korenchuk S, et al. Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin Cancer Res. 2000;6:1038–45.

    CAS  PubMed  Google Scholar 

  5. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 2006;66:2815–25.

    Article  CAS  PubMed  Google Scholar 

  6. Tamae D, Mostaghel E, Montgomery B, Nelson PS, Balk SP, Kantoff PW, et al. The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high-risk localized and advanced castration-resistant prostate cancer. Chem-Biol Interact. 2015;234:332–8.

    Article  CAS  PubMed  Google Scholar 

  7. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl J Med. 2011;364:1995–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schiffer L, Barnard L, Baranowski ES, Gilligan LC, Taylor AE, Arlt W, et al. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J Steroid Biochem Mol Biol. 2019;194:105439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl J Med. 2014;371:424–33.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chi KN, Agarwal N, Bjartell A, Chung BH, Pereira de Santana Gomes AJ, Given R, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N. Engl J Med. 2019;381:13–24.

    Article  CAS  PubMed  Google Scholar 

  11. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl J Med. 2013;368:138–48.

    Article  CAS  PubMed  Google Scholar 

  12. de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl J Med. 2020;382:2091–102.

    Article  PubMed  Google Scholar 

  13. Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 2013;19:3621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017;32:474–89. e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boukovala M, Spetsieris N, Weldon JA, Tsikkinis A, Hoang A, Aparicio A, et al. A candidate androgen signalling signature predictive of response to abiraterone acetate in men with metastatic castration-resistant prostate cancer. Eur J Cancer 2020;127:67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spetsieris N, Boukovala M, Weldon JA, Tsikkinis A, Hoang A, Aparicio A, et al. A Phase 2 trial of abiraterone followed by randomization to addition of Dasatinib or Sunitinib in men with metastatic castration-resistant prostate cancer. Clin Genitourin Cancer. 2021;19:22–31. e5.

    Article  PubMed  Google Scholar 

  19. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma. 2009;25:1754–60.

    Article  CAS  Google Scholar 

  20. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinforma. 2009;25:2865–71.

    Article  CAS  Google Scholar 

  23. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28:1747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 2014;346:256–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5:557–72.

    Article  PubMed  Google Scholar 

  26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinforma. 2013;29:15–21.

    Article  CAS  Google Scholar 

  27. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinforma. 2015;31:166–9.

    Article  CAS  Google Scholar 

  28. Efstathiou E, Titus M, Wen S, Hoang A, Karlou M, Ashe R, et al. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur Urol. 2015;67:53–60.

    Article  CAS  PubMed  Google Scholar 

  29. Efstathiou E, Titus M, Tsavachidou D, Tzelepi V, Wen S, Hoang A, et al. Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. J Clin Oncol: Off J Am Soc Clin Oncol. 2012;30:637–43.

    Article  CAS  Google Scholar 

  30. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res. 2005;11:4653–7.

    Article  CAS  PubMed  Google Scholar 

  31. Palanisamy N, Yang J, Shepherd PDA, Li-Ning-Tapia EM, Labanca E, Manyam GC, et al. The MD Anderson Prostate Cancer Patient-derived Xenograft Series (MDA PCa PDX) captures the molecular landscape of prostate cancer and facilitates Marker-driven therapy development. Clin Cancer Res. 2020;26:4933–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Varkaris A, Corn PG, Parikh NU, Efstathiou E, Song JH, Lee YC, et al. Integrating Murine and clinical trials with Cabozantinib to understand roles of MET and VEGFR2 as targets for growth inhibition of prostate cancer. Clin Cancer Res. 2016;22:107–21.

    Article  CAS  PubMed  Google Scholar 

  33. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013;155:1309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Isikbay M, Otto K, Kregel S, Kach J, Cai Y, Vander Griend DJ, et al. Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Hormones Cancer. 2014;5:72–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Missaghian E, Kempná P, Dick B, Hirsch A, Alikhani-Koupaei R, Jégou B, et al. Role of DNA methylation in the tissue-specific expression of the CYP17A1 gene for steroidogenesis in rodents. J Endocrinol. 2009;202:99–109.

    Article  CAS  PubMed  Google Scholar 

  36. Perkins LM, Payne AH. Quantification of P450scc, P450(17) alpha, and iron sulfur protein reductase in Leydig cells and adrenals of inbred strains of mice. Endocrinology 1988;123:2675–82.

    Article  CAS  PubMed  Google Scholar 

  37. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. Prospective multicenter validation of androgen receptor Splice Variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: The PROPHECY Study. J Clin Oncol: Off J Am Soc Clin Oncol. 2019;37:1120–9.

    Article  CAS  Google Scholar 

  39. Mostaghel EA, Zhang A, Hernandez S, Marck BT, Zhang X, Tamae D, et al. Contribution of adrenal glands to intratumor androgens and growth of castration-resistant prostate cancer. Clin Cancer Res. 2019;25:426–39.

    Article  CAS  PubMed  Google Scholar 

  40. Mostaghel EA, Marck BT, Kolokythas O, Chew F, Yu EY, Schweizer MT, et al. Circulating and intratumoral adrenal androgens correlate with response to abiraterone in men with castration-resistant prostate cancer. Clin Cancer Res. 2021;27:6001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aparicio AM, Shen L, Tapia EL, Lu JF, Chen HC, Zhang J, et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin Cancer Res. 2016;22:1520–30.

    Article  CAS  PubMed  Google Scholar 

  42. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68:4447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus Prednisone in metastatic, castration-sensitive prostate cancer. N. Engl J Med. 2017;377:352–60.

    Article  CAS  PubMed  Google Scholar 

  44. Evaul K, Li R, Papari-Zareei M, Auchus RJ, Sharifi N. 3beta-hydroxysteroid dehydrogenase is a possible pharmacological target in the treatment of castration-resistant prostate cancer. Endocrinology 2010;151:3514–20.

    Article  CAS  PubMed  Google Scholar 

  45. Efstathiou E, Davis JW, Pisters L, Li W, Wen S, McMullin RP, et al. Clinical and biological characterisation of localised high-risk prostate cancer: results of a randomised preoperative study of a luteinising hormone-releasing hormone agonist with or without Abiraterone Acetate plus Prednisone. Eur Urol. 2019;76:418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The experiments reported in this study were funded by the David H. Koch Center for Applied Research of Genitourinary Cancers. AWH is supported by a Conquer Cancer Foundation Young Investigator Award, the Rob Heyvaert and Paul Heynen Prostate Cancer Foundation Young Investigator Award, and philanthropic donations from Michael and Patricia Berns.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Christopher J. Logothetis and Mark A. Titus. Collection and assembly of data: Minas J Sakellakis, Andrew W. Hahn, Sumankalai Ramachandran, Anh Hoang, Jian H. Song, Peter Sheperd, Miao Zhang, Patricia Troncoso, and Mark A. Titus. Data analysis and interpretation: All authors. Manuscript writing: All authors. Final approval of manuscript: All authors.

Corresponding authors

Correspondence to Christopher J. Logothetis or Mark A. Titus.

Ethics declarations

Competing interests

DEF has received research funding from GTx, Inc and has a familial relationship with Hummingbird Bioscience, Maia Biotechnology, Alms Therapeutics, Hinova Pharmaceuticals, and Barricade Therapeutics. CJL reports commercial research grants from Janssen, ORIC Pharmaceuticals, Novartis, Aragon Pharmaceuticals, and honoraria from Merck, Sharp, and Dohme, Bayer, and Amgen. The other authors report no potential conflicts of interest.

Consent for publication

Informed consent was obtained from each patient for the studies described above and subsequent publication.

Ethics approval

This study was approved by the University of Texas MD Anderson Cancer Center Institutional Review Board and the IACUC committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables and Figure Legends

41391_2022_590_MOESM2_ESM.png

Supplemental Figure 1: Immunohistochemical staining of prostate cancer adrenal metastases for androgen receptor (AR), glucocorticoid receptor (GR), and NKX3.1.

41391_2022_590_MOESM3_ESM.png

Supplemental Figure 2: Organoids developed from MDA-PCa-250 can convert adrenal androgens and progesterone to testosterone

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakellakis, M.J., Hahn, A.W., Ramachandran, S. et al. Characterization of prostate cancer adrenal metastases: dependence upon androgen receptor signaling and steroid hormones. Prostate Cancer Prostatic Dis 26, 751–758 (2023). https://doi.org/10.1038/s41391-022-00590-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-022-00590-x

Search

Quick links