Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries

Subjects

Abstract

The instability of the Ni-rich layered cathode materials in lithium-ion batteries is attributed to their labile surface reactivity. This reactivity induces the formation of residual lithium impurities on the cathode surface and severe side reactions with the electrolyte. Here we propose a washing process using Co-dissolved water for simultaneously removing residual lithium and forming a protective coating on Ni-rich layered cathodes. The washing induces the reconstruction of the near-surface structure through reactions with the residual lithium compounds, thereby preventing direct contact between the electrolyte and the Ni-rich surface. An additional fluorine coating on the washed cathode impedes the decomposition of salts, preventing the by-products from triggering autocatalytic side reactions at the electrolyte–cathode interface and thereby suppressing gas generation during cycling. The combination of these near-surface reconstructions synergistically extends the cycle lives of Ni-rich cathodes and satisfies the requirements concerning energy density, durability and safety for next-generation batteries in practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of Co-rich layer on the cathode surface.
Fig. 2: Characterizations of the reconstructed near-surface properties.
Fig. 3: Comparison of electrochemical performances depending on surface modifications.
Fig. 4: Post-mortem analyses of the cycled cathode.
Fig. 5: Investigation of the preformed LiF effect on the cathode surface through XPS depth analysis.
Fig. 6: Long-term cycling performance and swelling during cycling.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information. Source data are provided with this paper.

References

  1. Global EV outlook 2023. IEA https://www.iea.org/reports/global-ev-outlook-2023 (2023).

  2. Kim, J. M. et al. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 46, 155–182 (2021).

    Article  Google Scholar 

  3. Ryu, H.-H., Park, K.-J., Yoon, C. S. & Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018).

  4. Park, N.-Y. et al. Degradation mechanism of Ni-rich cathode materials: focusing on particle interior. ACS Energy Lett. 7, 2362–2369 (2022).

    Article  Google Scholar 

  5. Chen, J. G., De Vries, B. D., Lewandowski, J. T. & Hall, R. B. Direct differentiation of surface and bulk compositions of powder catalysts: application of electron-yield and fluorescence-yield NEXAFS to LixNi1–xO. Catal. Lett. 23, 25–35 (1994).

    Article  Google Scholar 

  6. Nohma, T. et al. Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries. J. Power Sources 54, 522–524 (1995).

    Article  Google Scholar 

  7. Freiberg, A. T. S., Sicklinger, J., Solchenbach, S. & Gasteiger, H. A. Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities. Electrochim. Acta 346, 136271 (2020).

    Article  Google Scholar 

  8. Jung, R. et al. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J. Electrochem. Soc. 165, A132–A141 (2018).

    Article  Google Scholar 

  9. Renfrew, S. E. & McCloskey, B. D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides. J. Am. Chem. Soc. 139, 17853–17860 (2017).

    Article  Google Scholar 

  10. Liu, H. S., Zhang, Z. R., Gong, Z. L. & Yang, Y. Origin of deterioration for LiNiO2 cathode material during storage in air. Electrochem. Solid State Lett. 7, A190–A193 (2004).

    Article  Google Scholar 

  11. Bi, Y., Li, Q., Yi, R. & Xiao, J. To pave the way for large-scale electrode processing of moisture-sensitive Ni-rich cathodes. J. Electrochem. Soc. 169, 020521 (2022).

    Article  Google Scholar 

  12. Zhang, W. J. et al. Air instability of Ni-rich layered oxides—a roadblock to large scale application. Adv. Energy Mater. 13, 2202993 (2022).

    Article  Google Scholar 

  13. Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

  14. Sicklinger, J., Metzger, M., Beyer, H., Pritzl, D. & Gasteiger, H. A. Ambient storage derived surface contamination of NCM811 and NCM111: performance implications and mitigation strategies. J. Electrochem. Soc. 166, A2322–A2335 (2019).

    Article  Google Scholar 

  15. Weber, D., Tripkovic, D., Kretschmer, K., Bianchini, M. & Brezesinski, T. Surface modification strategies for improving the cycling performance of Ni-rich cathode materials. Eur. J. Inorg. Chem. 33, 3117–3130 (2020).

    Article  Google Scholar 

  16. Kaur, G. & Gates, B. D. Review—surface coatings for cathodes in lithium ion batteries: from crystal structures to electrochemical performance. J. Electrochem. Soc. 169, 043504 (2022).

    Article  Google Scholar 

  17. Renfrew, S. E., Kaufman, L. A. & McCloskey, B. D. Altering surface contaminants and defects influences the first-cycle outgassing and irreversible transformations of LiNi0.6Mn0.2Co0.2O2. ACS Appl. Mater. Interfaces 11, 34913–34921 (2019).

    Article  Google Scholar 

  18. Pritzl, D. et al. Washing of nickel-rich cathode materials for lithium-ion batteries: towards a mechanistic understanding. J. Electrochem. Soc. 166, A4056–A4066 (2019).

    Article  Google Scholar 

  19. Gao, Y. E. et al. Revealing the relationships between washing/recalcination processes and structure performance of Ni-rich layered cathode materials. ACS Appl. Energy Mater. 5, 15069–15077 (2022).

    Article  Google Scholar 

  20. Doo, S. W. et al. Residual Li compounds—selective washing process for Ni-rich layered oxide cathode materials for Li-ion batteries. J. Electrochem. Soc. 168, 100529 (2021).

    Article  Google Scholar 

  21. Wang, W. et al. In situ tuning residual lithium compounds and constructing TiO2 coating for surface modification of a nickel-rich cathode toward high-energy lithium-ion batteries. ACS Appl. Energy Mater. 3, 12423–12432 (2020).

    Article  Google Scholar 

  22. Sattar, T., Sim, S. J., Jin, B. S. & Kim, H. S. Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for lithium-ion batteries. Sci. Rep. 11, 18590 (2021).

    Article  Google Scholar 

  23. Park, J. et al. Scalable conversion of residual lithium into conformal artificial cathode electrolyte interphase via a single-step wet-chemical process for high-voltage Ni-rich cathode operation. Chem. Eng. J. 467, 143335 (2023).

    Article  Google Scholar 

  24. Li, J. et al. Reduction of surface residual lithium compounds for single-crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 atomic layer deposition and post-annealing. Coatings 12, 84 (2022).

    Article  Google Scholar 

  25. Du, Y.-H. et al. Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes. Nano Energy 94, 106901 (2022).

    Article  Google Scholar 

  26. Zhou, Y., Hu, Z., Huang, Y., Wu, Y. & Hong, Z. Effect of solution wash on the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials. J. Alloys Compd. 888, 161584 (2021).

    Article  Google Scholar 

  27. Shen, Y. et al. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes. ACS Appl. Mater. Interfaces 13, 717–726 (2021).

    Article  Google Scholar 

  28. Ryu, H.-H., Lim, H.-W., Kang, G.-C., Park, N.-Y. & Sun, Y.-K. Long-lasting Ni-rich NCMA cathodes via simultaneous microstructural refinement and surface modification. ACS Energy Lett. 8, 1354–1361 (2023).

    Article  Google Scholar 

  29. Beyer, H., Meini, S., Tsiouvaras, N., Piana, M. & Gasteiger, H. A. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries. Phys. Chem. Chem. Phys. 15, 11025 (2013).

    Article  Google Scholar 

  30. Bi, Y. et al. Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Adv. 6, 19233–19237 (2016).

    Article  Google Scholar 

  31. Shkrob, I. A. et al. Chemical weathering of layered Ni-rich oxide electrode materials: evidence for cation exchange. J. Electrochem. Soc. 164, A1489–A1498 (2017).

    Article  Google Scholar 

  32. Hartmann, L., Pritzl, D., Beyer, H. & Gasteiger, H. A. Evidence for Li+/H+ exchange during ambient storage of Ni-rich cathode active materials. J. Electrochem. Soc. 168, 070507 (2021).

    Article  Google Scholar 

  33. Lee, W. et al. Destabilization of the surface structure of Ni-rich layered materials by water-washing process. Energy Storage Mater. 44, 441–451 (2022).

    Article  Google Scholar 

  34. Pan, J., Sun, Y., Wan, P., Wang, Z. & Liu, X. Synthesis, characterization and electrochemical performance of battery grade NiOOH. Electrochem. Commun. 7, 857–862 (2005).

    Article  Google Scholar 

  35. Lakshmanan, R., Gangulibabu, Bhuvaneswari, D. & Kalaiselvi, N. Temperature dependent surface morphology and lithium diffusion kinetics of LiCoO2 cathode. Met. Mater. Int. 18, 249–255 (2012).

    Article  Google Scholar 

  36. Min, K. et al. Residual Li reactive coating with Co3O4 for superior electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material. J. Electrochem. Soc. 165, A79–A85 (2018).

    Article  Google Scholar 

  37. Porthault, H., Baddour-Hadjean, R., Le Cras, F., Bourbon, C. & Franger, S. Raman study of the spinel-to-layered phase transformation in sol–gel LiCoO2 cathode powders as a function of the post-annealing temperature. Vib. Spectrosc. 62, 152–158 (2012).

    Article  Google Scholar 

  38. Gummow, R. J., Thackeray, M. M., David, W. I. F. & Hull, S. Structure and electrochemistry of lithium cobalt oxide synthesized at 400 °C. Mat. Res. Bull. 27, 327–337 (1992).

    Article  Google Scholar 

  39. Zhang, H., Omenya, F., Whittingham, M. S., Wang, C. & Zhou, G. Formation of an anti-core–shell structure in layered oxide cathodes for Li-ion batteries. ACS Energy Lett. 2, 2598–2606 (2017).

    Article  Google Scholar 

  40. Hatsukade, T., Schiele, A., Hartmann, P., Brezesinski, T. & Janek, J. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes. ACS Appl. Mater. Interfaces 10, 38892–38899 (2018).

    Article  Google Scholar 

  41. Rinkel, B. L. D., Vivek, J. P., Garcia-Araez, N. & Grey, C. P. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries. Energy Environ. Sci. 15, 3416–3438 (2022).

    Article  Google Scholar 

  42. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 8, 4820–4825 (2017).

    Article  Google Scholar 

  43. Riewald, F. et al. The LiNiO2 cathode active material: a comprehensive study of calcination conditions and their correlation with physicochemical properties part II. morphology. J. Electrochem. Soc. 169, 020529 (2022).

    Article  Google Scholar 

  44. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361–A1377 (2017).

    Article  Google Scholar 

  45. Yu, Y. et al. Coupled LiPF6 decomposition and carbonate dehydrogenation enhanced by highly covalent metal oxides in high-energy Li-ion batteries. J. Phys. Chem. C. 122, 27368–27382 (2018).

    Article  Google Scholar 

  46. Guéguen, A. et al. Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry. J. Electrochem. Soc. 163, A1095–A1100 (2016).

    Article  Google Scholar 

  47. Spotte-Smith, E. W. C., Petrocelli, T. B., Patel, H. D., Blau, S. M. & Persson, K. A. Elementary decomposition mechanisms of lithium hexafluorophosphate in battery electrolytes and interphases. ACS Energy Lett. 8, 347–355 (2022).

    Article  Google Scholar 

  48. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article  Google Scholar 

  49. Breddemann, U. & Krossing, I. Review on synthesis, characterization, and electrochemical properties of fluorinated nickel–cobalt–manganese cathode active materials for lithium-ion batteries. ChemElectroChem 7, 1389–1430 (2020).

    Article  Google Scholar 

  50. Park, N.-Y. et al. High-energy cathodes via precision microstructure tailoring for next-generation electric vehicles. ACS Energy Lett. 6, 4195–4202 (2021).

    Article  Google Scholar 

  51. Ryu, H.-H., Lim, H.-W., Lee, S. G. & Sun, Y.-K. Optimization of molybdenum-doped Ni-rich layered cathodes for long-term cycling. Energy Storage Mater. 59, 102771 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work and all authors were supported by the Human Resources Development Program (number 20214000000320) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry and Energy of the Korean government.

Author information

Authors and Affiliations

Authors

Contributions

H.-H.R. and Y.-K.S. conceived and designed the research. H.-H.R., H.-W.L. and S.G.L. performed the experiments and characterization of materials. H.-H.R. and H.-W.L. analysed the data. H.-H.R., H.-W.L., S.G.L. and Y.-K.S. contributed to the discussion of the results. H.-H.R. wrote the original draft, and Y.-K.S. reviewed and edited the manuscript. All the authors commented on and revised the manuscript.

Corresponding author

Correspondence to Yang-Kook Sun.

Ethics declarations

Competing interests

The authors have filed provisional patent applications: Y.-K.S. and H.-H.R. are inventors of a patent application (Korean patent application 10-2023-0128916) on the experimental methods for washing and coating herein. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Xifei Li, Philipp Kurzhals and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Discussion and Table 1.

Supplementary Data 1

Source data for Supplementary Information.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, HH., Lim, HW., Lee, S.G. et al. Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries. Nat Energy 9, 47–56 (2024). https://doi.org/10.1038/s41560-023-01403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01403-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing