Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries

Abstract

DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protein-templated DEDL selection method.
Fig. 2: Model selections with streptavidin.
Fig. 3: Model selections with HIV-1 PR.
Fig. 4: Selection of DEDL-1 against S-protein.
Fig. 5: Selection of DEDL-1 against NSP13.
Fig. 6: Selection of DEDL-2 against PD-L1 and STAT5b.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article, the associated Source Data files, Supplementary Information figures and Extended Data figures. All data are also available at figshare (https://doi.org/10.6084/m9.figshare.24297505). All the published tools and packages used for data analysis are provided with the paper. The Protein Data Bank references can be accessed at https://www.rcsb.org/ under accession codes 1ZPA (HIV-1 PR), 6VW1 (S-protein/ACE2 complex) and 7NIO (SARS-CoV-2 NSP13 helicase). Source data are provided with this paper.

Code availability

The custom Python scripts for sequencing data analysis have been made freely available for download at GitHub (https://github.com/GAOYingHKU/DEL_data_analysis; https://github.com/GAOYingHKU/DEL_data_analysis/tree/main/additional_script).

References

  1. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Needels, M. C. et al. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc. Natl Acad. Sci. USA 90, 10700–10704 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang, Y., Li, Y. & Li, X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat. Chem. 14, 129–140 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Satz, A. L., Kuai, L. & Peng, X. Selections and screenings of DNA-encoded chemical libraries against enzyme and cellular targets. Bioorg. Med. Chem. Lett. 39, 127851 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Kodadek, T., Paciaroni, N. G., Balzarini, M. & Dickson, P. Beyond protein binding: recent advances in screening DNA-encoded libraries. Chem. Commun. 55, 13330–13341 (2019).

    Article  CAS  Google Scholar 

  6. Fitzgerald, P. R. & Paegel, B. M. DNA-encoded chemistry: drug discovery from a few good reactions. Chem. Rev. 121, 7155–7177 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Götte, K., Chines, S. & Brunschweiger, A. Reaction development for DNA-encoded library technology: from evolution to revolution? Tetrahedron Lett. 61, 151889 (2020).

    Article  Google Scholar 

  8. Patel, S., Badir, S. O. & Molander, G. A. Developments in photoredox-mediated alkylation for DNA-encoded libraries. Trends Chem. 3, 161–175 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Dickson, P. & Kodadek, T. Chemical composition of DNA-encoded libraries, past present and future. Org. Biomol. Chem. 17, 4676–4688 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conole, D., J, H. H. & M, J. W. The maturation of DNA encoded libraries: opportunities for new users. Future Med. Chem. 13, 173–191 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Flood, D. T., Kingston, C., Vantourout, J. C., Dawson, P. E. & Baran, P. S. DNA encoded libraries: a visitor’s guide. Isr. J. Chem. 60, 268–280 (2020).

    Article  CAS  Google Scholar 

  12. Lenci, E., Baldini, L. & Trabocchi, A. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorg. Med. Chem. 41, 116218 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Fair, R. J., Walsh, R. T. & Hupp, C. D. The expanding reaction toolkit for DNA-encoded libraries. Bioorg. Med. Chem. Lett. 51, 128339 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Gerry, C. J. & Schreiber, S. L. Recent achievements and current trajectories of diversity-oriented synthesis. Curr. Opin. Chem. Biol. 56, 1–9 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Kolmel, D. K. et al. Employing photocatalysis for the design and preparation of DNA-encoded libraries: a case study. Chem. Rec. 21, 616–630 (2021).

    Article  PubMed  Google Scholar 

  16. Anderson, M. J. et al. in DNA-Encoded Libraries (eds Brunschweiger, A. & Young, D. W.) 65–121 (Springer, 2022).

  17. Shi, Y., Wu, Y., Yu, J., Zhang, W. & Zhuang, C. DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output. RSC Adv. 11, 2359–2376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luk, K.-C. & Satz, A. L. in A Handbook for DNA‐Encoded Chemistry (ed. Goodnow, R. A.) 67–98 (Wiley, 2014).

  19. Song, M. & Hwang, G. T. DNA-encoded library screening as a core platform technology in drug discovery. Its synthetic method development and applications in DEL synthesis. J. Med. Chem. 63, 6578–6599 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Kunig, V. B. K., Potowski, M., Klika Skopic, M. & Brunschweiger, A. Scanning protein surfaces with DNA-encoded libraries. ChemMedChem 16, 1048–1062 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, Y. & Li, X. Recent advances on the selection methods of DNA-encoded libraries. ChemBioChem 22, 2384–2397 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Satz, A. L. et al. DNA-encoded chemical libraries. Nat. Rev. Methods Primers 2, 3 (2022).

    Article  CAS  Google Scholar 

  23. Ottl, J., Leder, L., Schaefer, J. V. & Dumelin, C. E. Encoded library technologies as integrated lead finding platforms for drug discovery. Molecules 24, 1629 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plais, L. & Scheuermann, J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem. Biol. 3, 7–17 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Gironda-Martínez, A., Donckele, E. J., Samain, F. & Neri, D. DNA-Encoded chemical libraries: a comprehensive review with succesful stories and future challenges. ACS Pharmacol. Trans. Sci. 4, 1265–1279 (2021).

    Article  Google Scholar 

  26. Yuen, L. H. & Franzini, R. M. Achievements, challenges and opportunities in DNA-encoded library research: an academic point of view. ChemBioChem 18, 829–836 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Neri, D. & Lerner, R. A. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu. Rev. Biochem. 87, 479–502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goodnow, R. A. Jr., Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Kunig, V., Potowski, M., Gohla, A. & Brunschweiger, A. DNA-encoded libraries—an efficient small molecule discovery technology for the biomedical sciences. Biol. Chem. 399, 691–710 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, Y., Savych, O., Moroz, Y., Chen, Y. Y. & Goodnow, R. A. DNA-encoded library chemistry: amplification of chemical reaction diversity for the exploration of chemical space. Aldrichim Acta 52, 75–87 (2019).

    CAS  Google Scholar 

  31. Reddavide, F. V., Thompson, M., Mannocci, L. & Zhang, Y. X. DNA-encoded fragment libraries: dynamic assembly, single-molecule detection and high-throughput hit validation. Aldrichim Acta 52, 63–74 (2019).

    CAS  Google Scholar 

  32. Goodnow, R. A. & Davie, C. P. DNA-encoded library technology: a brief guide to its evolution and impact on drug discovery. Ann. Rep. Med. Chem. 50, 1–15 (2017).

    CAS  Google Scholar 

  33. Dockerill, M. & Winssinger, N. DNA-encoded libraries: towards harnessing their full power with Darwinian evolution. Angew. Chem. Int. Ed. 62, e202215542 (2023).

    Article  CAS  Google Scholar 

  34. Peterson, A. A. & Liu, D. R. Small-molecule discovery through DNA-encoded libraries. Nat. Rev. Drug Discov. 22, 699–722 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Melkko, S., Scheuermann, J., Dumelin, C. E. & Neri, D. Encoded self-assembling chemical libraries. Nat. Biotechnol. 22, 568–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Wichert, M. et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Scheuermann, J. & Neri, D. Dual-pharmacophore DNA-encoded chemical libraries. Curr. Opin. Chem. Biol. 26, 99–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Dal Corso, A., Catalano, M., Schmid, A., Scheuermann, J. & Neri, D. Affinity enhancement of protein ligands by reversible covalent modification of neighboring lysine residues. Angew. Chem. Int. Ed. 57, 17178–17182 (2018).

    Article  CAS  Google Scholar 

  40. Zimmermann, G. et al. A specific and covalent JNK-1 ligand selected from an encoded self-assembling chemical library. Chem. Eur. J. 23, 8152–8155 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Catalano, M. et al. Discovery, affinity maturation and multimerization of small molecule ligands against human tyrosinase and tyrosinase-related protein 1. RSC Med. Chem. 12, 363–369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Oehler, S., Plais, L., Bassi, G., Neri, D. & Scheuermann, J. Modular assembly and encoding strategies for dual-display DNA-encoded chemical libraries. Chem. Commun. 57, 12289–12292 (2021).

    Article  CAS  Google Scholar 

  43. Plais, L. et al. Universal encoding of next generation DNA-encoded chemical libraries. Chem. Sci. 13, 967–974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuai, L., O'Keeffe, T. & Arico-Muendel, C. Randomness in DNA encoded library selection data can be modeled for more reliable enrichment calculation. SLAS Discov 23, 405–416 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Satz, A. L., Hochstrasser, R. & Petersen, A. C. Analysis of current DNA encoded library screening data indicates higher false negative rates for numerically larger libraries. ACS Comb. Sci. 19, 234–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Satz, A. L. Simulated screens of DNA encoded libraries: the potential influence of chemical synthesis fidelity on interpretation of structure-activity relationships. ACS Comb. Sci. 18, 415–424 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Pianowski, Z. L. & Winssinger, N. Nucleic acid encoding to program self-assembly in chemical biology. Chem. Soc. Rev. 37, 1330–1336 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Zambaldo, C., Barluenga, S. & Winssinger, N. PNA-encoded chemical libraries. Curr. Opin. Chem. Biol. 26, 8–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Daguer, J. P. et al. DNA display of fragment pairs as a tool for the discovery of novel biologically active small molecules. Chem. Sci. 6, 739–744 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Daguer, J. P., Ciobanu, M., Alvarez, S., Barluenga, S. & Winssinger, N. DNA-templated combinatorial assembly of small molecule fragments amenable to selection/amplification cycles. Chem. Sci. 2, 625–632 (2011).

    Article  CAS  Google Scholar 

  51. Ciobanu, M. et al. Selection of a synthetic glycan oligomer from a library of DNA-templated fragments against DC-SIGN and inhibition of HIV gp120 binding to dendritic cells. Chem. Commun. 47, 9321–9323 (2011).

    Article  CAS  Google Scholar 

  52. Vummidi, B. R. et al. A mating mechanism to generate diversity for the Darwinian selection of DNA-encoded synthetic molecules. Nat. Chem. 14, 141–152 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Diezmann, F. & Seitz, O. DNA-guided display of proteins and protein ligands for the interrogation of biology. Chem. Soc. Rev. 40, 5789–5801 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Winssinger, N. Nucleic acid-programmed assemblies: translating instruction into function in chemical biology. Chimia 67, 340–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Barluenga, S. et al. Novel PTP1B inhibitors identified by DNA display of fragment pairs. Bioorg. Med. Chem. Lett. 26, 1080–1085 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Eberhard, H., Diezmann, F. & Seitz, O. DNA as a molecular ruler: interrogation of a tandem SH2 domain with self-assembled, bivalent DNA-peptide complexes. Angew. Chem. Int. Ed. 50, 4146–4150 (2011).

    Article  CAS  Google Scholar 

  57. Yeldell, S. B. & Seitz, O. Nucleic acid constructs for the interrogation of multivalent protein interactions. Chem. Soc. Rev. 49, 6848–6865 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Bandlow, V. et al. Spatial screening of hemagglutinin on Influenza A virus particles: sialyl-LacNAc displays on DNA and PEG scaffolds reveal the requirements for bivalency enhanced interactions with weak monovalent binders. J. Am. Chem. Soc. 139, 16389–16397 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Saarbach, J., Sabale, P. M. & Winssinger, N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics and therapeutics. Curr. Opin. Chem. Biol. 52, 112–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Spinelli, N., Defrancq, E. & Morvan, F. Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications. Chem. Soc. Rev. 42, 4557–4573 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Morvan, F., Vidal, S., Souteyrand, E., Chevolot, Y. & Vasseur, J. J. DNA glycoclusters and DNA-based carbohydrate microarrays: from design to applications. RSC Adv. 2, 12043–12068 (2012).

    Article  CAS  Google Scholar 

  62. Bigatti, M. et al. Impact of a central scaffold on the binding affinity of fragment pairs isolated from DNA-encoded self-assembling chemical libraries. ChemMedChem 12, 1748–1752 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Chung, S., Parker, J. B., Bianchet, M., Amzel, L. M. & Stivers, J. T. Impact of linker strain and flexibility in the design of a fragment-based inhibitor. Nat. Chem. Biol. 5, 407–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deng, Y. et al. Selection of DNA-encoded dynamic chemical libraries for direct inhibitor discovery. Angew. Chem. Int. Ed. 59, 14965–14972 (2020).

    Article  CAS  Google Scholar 

  65. Cui, M. et al. Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat. Commun. 14, 1481 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi, B., Zhou, Y. & Li, X. Y. Recent advances in DNA-encoded dynamic libraries. RSC Chem. Biol. 3, 407–419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Rees, D. C., Congreve, M., Murray, C. W. & Carr, R. Fragment-based lead discovery. Nat. Rev. Drug Discov. 3, 660–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Abendroth, F. et al. DNA-controlled bivalent presentation of ligands for the estrogen receptor. Angew. Chem. Int. Ed. 50, 8592–8596 (2011).

    Article  CAS  Google Scholar 

  70. Scheuermann, J. et al. DNA-encoded chemical libraries for the discovery of MMP-3 inhibitors. Bioconjug. Chem. 19, 778–785 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, Y. et al. DNA-encoded dynamic chemical library and its applications in ligand discovery. J. Am. Chem. Soc. 140, 15859–15867 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Zhou, Y., Peng, J., Shen, W. & Li, X. Psoralen as an interstrand DNA crosslinker in the selection of DNA-encoded dynamic chemical library. Biochem. Biophys. Res. Commun. 533, 215–222 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Bosc, D. et al. Kinetic target-guided synthesis: reaching the age of maturity. J. Med. Chem. 63, 3817–3833 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Bosc, D., Jakhlal, J., Deprez, B. & Deprez-Poulain, R. Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey. Future Med. Chem. 8, 381–404 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Hu, X. D. & Manetsch, R. Kinetic target-guided synthesis. Chem. Soc. Rev. 39, 1316–1324 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Green, N. M. Thermodynamics of the binding of biotin and some analogues by avidin. Biochem. J. 101, 774–780 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hirsch, J. D. et al. Easily reversible desthiobiotin binding to streptavidin, avidin and other biotin-binding proteins: uses for protein labeling, detection and isolation. Anal. Biochem. 308, 343–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Li, G. et al. Design, preparation and selection of DNA-encoded dynamic libraries. Chem. Sci. 6, 7097–7104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang, Y. et al. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat. Chem. 13, 77–88 (2021).

    Article  PubMed  Google Scholar 

  80. Kibbe, W. A. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hamblett, K. J. et al. A streptavidin-biotin binding system that minimizes blocking by endogenous biotin. Bioconjug. Chem. 13, 588–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, Q. et al. Exploring the lower limit of individual DNA-encoded library molecules in selection. SLAS Discov. 25, 523–529 (2020).

    Article  PubMed  Google Scholar 

  83. Sannino, A. et al. Quantitative assessment of affinity selection performance by using DNA-encoded chemical libraries. ChemBioChem 20, 955–962 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Reddavide, F. V. et al. Second generation DNA-encoded dynamic combinatorial chemical libraries. Chem. Commun. 55, 3753–3756 (2019).

    Article  CAS  Google Scholar 

  85. Kohl, N. E. et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl Acad. Sci. USA 85, 4686–4690 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghosh, A. K., Osswald, H. L. & Prato, G. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J. Med. Chem. 59, 5172–5208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Whiting, M. et al. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. 45, 1435–1439 (2006).

    Article  CAS  Google Scholar 

  88. Brik, A. et al. Rapid diversity-oriented synthesis in microtiter plates for in situ screening of HIV protease inhibitors. ChemBioChem 4, 1246–1248 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Cheeseman, J. D., Corbett, A. D., Gleason, J. L. & Kazlauskas, R. J. Receptor-assisted combinatorial chemistry: thermodynamics and kinetics in drug discovery. Chem. Eur. J. 11, 1708–1716 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Brik, A. et al. 1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem 6, 1167–1169 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Bassi, G. et al. A single-stranded DNA-encoded chemical library based on a stereoisomeric scaffold enables ligand discovery by modular assembly of building blocks. Adv. Sci. 7, 2001970 (2020).

    Article  CAS  Google Scholar 

  92. Gironda-Martinez, A., Neri, D., Samain, F. & Donckele, E. J. DNA-compatible diazo-transfer reaction in aqueous media suitable for DNA-encoded chemical library synthesis. Org. Lett. 21, 9555–9558 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Walls, A. C. et al. Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kleiner, R. E., Dumelin, C. E., Tiu, G. C., Sakurai, K. & Liu, D. R. In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J. Am. Chem. Soc. 132, 11779–11791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lossouarn, A., Renard, P.-Y. & Sabot, C. Tailored bioorthogonal and bioconjugate chemistry: a source of inspiration for developing kinetic target-guided synthesis strategies. Bioconjug. Chem. 32, 63–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Jaegle, M. et al. Protein-templated fragment ligations-from molecular recognition to drug discovery. Angew. Chem. Int. Ed. 56, 7358–7378 (2017).

    Article  CAS  Google Scholar 

  98. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  99. Zhang, L. et al. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc. 127, 15998–15999 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Johansson, J. R., Beke-Somfai, T., Said Stålsmeden, A. & Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism and applications. Chem. Rev. 116, 14726–14768 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Boren, B. C. et al. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. J. Am. Chem. Soc. 130, 8923–8930 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Ferrini, S. et al. Ruthenium-catalyzed synthesis of 5-amino-1,2,3-triazole-4-carboxylates for triazole-based scaffolds: beyond the Dimroth rearrangement. J. Org. Chem. 80, 2562–2572 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Rasmussen, L. K., Boren, B. C. & Fokin, V. V. Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org. Lett. 9, 5337–5339 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Montoya, A. L. et al. Combining pharmacophore models derived from DNA-encoded chemical libraries with structure-based exploration to predict Tankyrase 1 inhibitors. Eur. J. Med. Chem. 246, 114980 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Arena, B. J. Deactivation of ruthenium catalysts in continuous glucose hydrogenation. Appl. Catal. A 87, 219–229 (1992).

    Article  CAS  Google Scholar 

  106. V’kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021).

    Article  PubMed  Google Scholar 

  107. Newman, J. A. et al. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat. Commun. 12, 4848 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Keum, Y.-S. & Jeong, Y.-J. Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target. Biochem. Pharmacol. 84, 1351–1358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jia, Z. et al. Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res. 47, 6538–6550 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shu, T. et al. SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol. Sin. 35, 321–329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, N. et al. Bismuth complexes inhibit the SARS coronavirus. Angew. Chem. Int. Ed. 46, 6464–6468 (2007).

    Article  CAS  Google Scholar 

  112. Upadhaya, S., Neftelinov, S. T., Hodge, J. & Campbell, J. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat. Rev. Drug Discov. 21, 482–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Levy, D. E. & Darnell, J. E. STATs: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Bunting, K. D. STAT5 signaling in normal and pathologic hematopoiesis. Front. Biosci. 12, 2807–2820 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Manaswiyoungkul, P. et al. Optimization of a high-throughput fluorescence polarization assay for STAT5B DNA binding domain-targeting inhibitors. J. Pharm. Biomed. Anal. 184, 113182 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Catalano, M. et al. Selective fragments for the CREBBP bromodomain identified from an encoded self-assembly chemical library. ChemMedChem 15, 1752–1756 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Melkko, S., Zhang, Y., Dumelin, C. E., Scheuermann, J. & Neri, D. Isolation of high-affinity trypsin inhibitors from a DNA-encoded chemical library. Angew. Chem. Int. Ed. 46, 4671–4674 (2007).

    Article  CAS  Google Scholar 

  118. Riching, K. M., Caine, E. A., Urh, M. & Daniels, D. L. The importance of cellular degradation kinetics for understanding mechanisms in targeted protein degradation. Chem. Soc. Rev. 51, 6210–6221 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Boutureira, O. & Bernardes, G. J. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Zuily, L. et al. Copper induces protein aggregation, a toxic process compensated by molecular chaperones. mBio 13, e03251-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ingle, A. P., Duran, N. & Rai, M. Bioactivity, mechanism of action and cytotoxicity of copper-based nanoparticles: a review. Appl. Microbiol. Biotechnol. 98, 1001–1009 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Gutteridge, J. M. & Wilkins, S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim. Biophys. Acta 759, 38–41 (1983).

    Article  CAS  PubMed  Google Scholar 

  123. Cervantes-Cervantes, M. P., Calderón-Salinas, J. V., Albores, A. & Muñoz-Sánchez, J. L. Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol. Trace Elem. Res. 103, 229–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pickens, C. J., Johnson, S. N., Pressnall, M. M., Leon, M. A. & Berkland, C. J. Practical considerations, challenges and limitations of bioconjugation via azide-alkyne cycloaddition. Bioconjug. Chem. 29, 686–701 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Darabedian, N. & Pratt, M. R. in Methods Enzymology Vol. 622. (ed. Shukla, A. K.) 293–307 (Academic, 2019).

  127. Schneider, D. et al. Anionic surfactants enhance click reaction-mediated protein conjugation with ubiquitin. Bioorg. Med. Chem. 24, 995–1001 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Dang, C. V., Reddy, E. P., Shokat, K. M. & Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 17, 502–508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dale, B. et al. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 21, 638–654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. White, M. A., Lin, W. & Cheng, X. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase. J. Phys. Chem. Lett. 11, 9144–9151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lim, C. T. et al. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease. Biochem. J 478, 2517–2531 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Corona, A. et al. Natural compounds inhibit SARS-CoV-2 nsp13 unwinding and ATPase enzyme activities. ACS Pharmacol. Transl. Sci. 5, 226–239 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Shi, B., Deng, Y., Zhao, P. & Li, X. Selecting a DNA-encoded chemical library against non-immobilized proteins using a ‘Ligate-Cross-Link-Purify’ strategy. Bioconjug. Chem. 28, 2293–2301 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, Y., Shen, W., Peng, J., Deng, Y. & Li, X. Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg. Med. Chem. 45, 116328 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Monty, O. B. C., Simmons, N., Chamakuri, S., Matzuk, M. M. & Young, D. W. Solution-phase fmoc-based peptide synthesis for DNA-encoded chemical libraries: reaction conditions, protecting group strategies and pitfalls. ACS Comb. Sci. 22, 833–843 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Tse, B. N., Snyder, T. M., Shen, Y. H. & Liu, D. R. Translation of DNA into a library of 13,000 synthetic small-molecule macrocycles suitable for in vitro selection. J. Am. Chem. Soc. 130, 15611–15626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Durbin, R. & Dear, S. Base qualities help sequencing software. Genome Res. 8, 161–162 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Shenzhen Bay Laboratory, Shenzhen, China (SZBL2020090501008), the Research Grants Council of Hong Kong SAR, China (AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G and 2122-7S04), NSFC of China (21877093, 22222702 and 91953119), GuangDong Basic and Applied Basic Research Foundation (2023A1515010711), the Fundamental Research Funds for the Central Universities (2022CDJQY-001) and Beijing National Laboratory for Molecular Sciences (BNLMS202104). We acknowledge support from the ‘Laboratory for Synthetic Chemistry and Chemical Biology’ under the Health@InnoHK Program and State Key Laboratory of Synthetic Chemistry by Innovation and Technology Commission, Hong Kong SAR, China. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank Y. Jia of The University of Hong Kong for assistance with the physiochemical property analysis of the hit compounds.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., W.S., H.S., Y.C. and X.L. conceived and designed the experiments. Y.Z., W.S., J.P, Q.L., X.W., S.L., F.S.L., J.M.-L. and G.Z. performed the experiments. Y.Z., W.S., Y.G., G.L., Y.L. and X.L. analysed the data. Y.Z., W.S., H.S., Y.C. and X.L. co-wrote the paper.

Corresponding authors

Correspondence to Hongzhe Sun, Yan Cao or Xiaoyu Li.

Ethics declarations

Competing interests

The University of Hong Kong has filed two patent applications on the chemical structures of the inhibitors of S-protein (Chinese patent application no. 202310194549.8) and NSP13 helicase (US provisional patent application no. 63/494,329). X.L., H.S., W.S., Y.Z., X.W. and G.L. are the inventors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Alexander Satz, Yixin Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Model selections with streptavidin.

a. A model library consisting of DB-DNA and amino-DNA (1:9) was selected against streptavidin, CA-2, or without protein. The linker structures are the same as A-1/B-1. The products were gel-purified, amplified by relay primer bypass PCR, and decoded with Sanger sequencing. b-d. Sanger sequencing results. The colored peaks represent individual bases (green: A; blue: C; red: T; black: G). The bar graph data in the background represent sequencing quality score for each base, which is calculated based on the estimated error probability for the base call as previously described137,138.

Extended Data Fig. 2 Model selections with HIV-1 PR.

a. The model library in Fig. 3e was selected against HIV-1 PR and the selection results were analyzed by Sanger sequencing. b. The same model library was subjected to the selection conditions without protein as a control experiment. The colored peaks represent individual bases (green: A; blue: C; red: T; black: G). The bar graph data in the background represent sequencing quality score for each base, which is calculated based on the estimated error probability for the base call as previously reported137,138.

Extended Data Fig. 3 Two large DEDLs were prepared for the selection.

R1, R2: building blocks; L: linker. The number of the building blocks and linkers in each library are shown. In sub-library A, R1 is installed before L in DEDL-1 and after L in DEDL-2, both using amidation reactions. Both libraries share the same sub-library B containing the same set of R2, which was installed by direct coupling to the respective DNA via amidation reactions. The azide group was synthesized through on-DNA diazo-transfer reactions from the amino group. See the Supplementary Information for details on DNA sequences, building block structures, library synthesis, and characterization data (Supplementary Figs. 1417).

Extended Data Fig. 4 Docking analysis of the selected S-protein inhibitors.

a. Crystal structure of the S-protein/ACE2 binding complex (PDB: 6VW1). The interface is highlighted in yellow and the residues involved are shown in sticks. b. S-10 (62-39-224, 1,4-isomer) is docked to S-protein and the detailed interactions are highlighted; the small molecule is shown in green and the amino acids are shown yellow. The hydrogen bonds are shown as dashed lines. c. Comparison of the binding sites of S-10, S-18 (the 1,5-isomer), and S-13 (62C-39-224), highlighted in yellow.

Extended Data Fig. 5 Characterization of the hit compounds from NPS13 selection.

a. Gel analysis of the selections. Top panel: after the selection; bottom panel: after relay primer bypass PCR; see complete gel images in Supplementary Figs. 46, 47. The gel analysis was performed three times with independent samples. All experiments were reproduced with similar results. b. NSP13 helicase ATPase activity assay of the compounds (200 µM); n = 3 independent experiments; data are presented as mean values ± s.d. c. Docking analysis using the crystal structure of NSP13 helicase (PDB: 7NIO). The ATP-binding site is enlarged; top panel: interaction map of 73-1-143; bottom panel: overlay of 73-1-143, ATP, and ADP; small molecules are shown as sticks and amino acids are shown yellow.

Source data

Extended Data Fig. 6 Selection against PD-L1 and STAT5b and characterization of the hit compounds.

a. 2D scatter plots of the selection results with PD-L1. x-axis: post-selection sequence count; y-axis: enrichment fold. b. Results of the time-resolved fluorescence energy transfer (TR-FRET) PD-L1/PD-1 binding assay. Compounds were tested at 1 mM. c. Inhibition titration curve of P-3 (219-16-170, 1,4-isomer) to determine the IC50 values. d. 2D scatter plots of the selection results with STAT5b. x-axis: post-selection sequence count; y-axis: enrichment fold. e. Fluorescence polarization assay to determine the inhibition activity against STAT5b/DNA binding; FAM: fluorescein. f. Results of the fluorescence polarization assay; the compounds were tested at 2 mM. Selection gel images are shown in Supplementary Figs. 46, 47. In b, c, and f, n = 3 independent experiments; data are presented as mean values ± s.d.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–47, Notes, detailed experimental procedure, additional discussion and other additional information related to this study.

Reporting Summary

Supplementary Table 1

Complete list of building blocks and DNA sequences of the libraries.

Supplementary Table 2

Source data for Supplementary figures.

Supplementary Data 1

Source data for library selections in Supplementary Figs. 13–34.

Supplementary Data 2

Source data for library selections in Supplementary Figs. 35–39.

Source data

Source Data Fig. 2

Unprocessed gels.

Source Data Fig. 3

Unprocessed gels.

Source Data Fig. 3

Library selection source data.

Source Data Fig. 4

Unprocessed gels.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Library selection source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Library selection source data.

Source Data Fig. 6

Library selection source data.

Source Data Extended Data Fig. 5

Unprocessed gels.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 6

Library selection source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Shen, W., Gao, Y. et al. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat. Chem. 16, 543–555 (2024). https://doi.org/10.1038/s41557-024-01442-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01442-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing