Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small-molecule discovery through DNA-encoded libraries

Abstract

The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DELs as a small-molecule discovery platform.
Fig. 2: Publications reporting novel small molecules discovered from DELs.
Fig. 3: Highlighted studies that use the typical immobilization DEL selection workflow to discover novel ligands.
Fig. 4: Clinical candidates discovered from DELs.
Fig. 5: Highlighted studies showing successful implementation of concurrent selection conditions to develop tailored ligands.
Fig. 6: Studies that incorporate non-immobilized selections or library retooling to enhance ligand discovery efforts.
Fig. 7: On-cell DEL-based small-molecule discovery.

Similar content being viewed by others

References

  1. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Clark, M. A. Selecting chemicals: the emerging utility of DNA-encoded libraries. Curr. Opin. Chem. Biol. 14, 396–403 (2010).

    CAS  PubMed  Google Scholar 

  3. Kleiner, R. E., Dumelin, C. E. & Liu, D. R. Small-molecule discovery from DNA-encoded chemical libraries. Chem. Soc. Rev. 40, 5707–5717 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tse, B. N., Snyder, T. M., Shen, Y. & Liu, D. R. Translation of DNA into a library of 13 000 synthetic small-molecule macrocycles suitable for in vitro selection. J. Am. Chem. Soc. 130, 15611–15626 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hansen, M. H. et al. A yoctoliter-scale DNA reactor for small-molecule evolution. J. Am. Chem. Soc. 131, 1322–1327 (2009).

    CAS  PubMed  Google Scholar 

  7. Wrenn, S. J., Weisinger, R. M., Halpin, D. R. & Harbury, P. B. Synthetic ligands discovered by in vitro selection. J. Am. Chem. Soc. 129, 13137–13143 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    CAS  PubMed  Google Scholar 

  9. Melkko, S., Scheuermann, J., Dumelin, C. E. & Neri, D. Encoded self-assembling chemical libraries. Nat. Biotechnol. 22, 568–574 (2004).

    CAS  PubMed  Google Scholar 

  10. Halpin, D. R. & Harbury, P. B. DNA display II. Genetic manipulation of combinatorial chemistry libraries for small-molecule evolution. PLoS Biol. 2, E174 (2004).

    PubMed  PubMed Central  Google Scholar 

  11. Buller, F. et al. Design and synthesis of a novel DNA-encoded chemical library using Diels–Alder cycloadditions. Bioorg. Med. Chem. Lett. 18, 5926–5931 (2008).

    CAS  PubMed  Google Scholar 

  12. Doyon, J. B., Snyder, T. M. & Liu, D. R. Highly sensitive in vitro selections for DNA-linked synthetic small molecules with protein binding affinity and specificity. J. Am. Chem. Soc. 125, 12372–12373 (2003).

    CAS  PubMed  Google Scholar 

  13. Mannocci, L. et al. High-throughput sequencing allows for the identification of binding molecules from DNA-encoded chemical libraries. Proc. Natl Acad. Sci. USA 105, 17670–17675 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kleiner, R. E., Dumelin, C. E., Tiu, G. C., Sakurai, K. & Liu, D. R. In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J. Am. Chem. Soc. 132, 11779–11791 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sunkari, Y. K., Siripuram, V. K., Nguyen, T. L. & Flajolet, M. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol. Sci. 43, 4–15 (2022).

    CAS  PubMed  Google Scholar 

  16. Castan, I. F. S. F., Graham, J. S., Salvini, C. L. A., Stanway-Gordon, H. A. & Waring, M. J. On the design of lead-like DNA-encoded chemical libraries. Bioorg. Med. Chem. 43, 116273 (2021).

    CAS  PubMed  Google Scholar 

  17. Fitzgerald, P. R. & Paegel, B. M. DNA-encoded chemistry: drug discovery from a few good reactions. Chem. Rev. 121, 7155–7177 (2021).

    CAS  PubMed  Google Scholar 

  18. Song, M. & Hwang, G. T. DNA-encoded library screening as core platform technology in drug discovery: its synthetic method development and applications in DEL synthesis. J. Med. Chem. 63, 6578–6599 (2020).

    CAS  PubMed  Google Scholar 

  19. Dickson, P. & Kodadek, T. Chemical composition of DNA-encoded libraries, past present and future. Org. Biomol. Chem. 17, 4676–4688 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gironda-Martínez, A., Donckele, E. J., Samain, F. & Neri, D. DNA-encoded chemical libraries: a comprehensive review with succesful stories and future challenges. ACS Pharmacol. Transl. Sci. 4, 1265–1279 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Kunig, V. B. K., Potowski, M., Klika Škopić, M. & Brunschweiger, A. Scanning protein surfaces with DNA-encoded libraries. ChemMedChem 16, 1048–1062 (2021).

    CAS  PubMed  Google Scholar 

  22. Zhao, G., Huang, Y., Zhou, Y., Li, Y. & Li, X. Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opin. Drug Discov. 14, 735–753 (2019).

    CAS  PubMed  Google Scholar 

  23. Neri, D. & Lerner, R. A. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu. Rev. Biochem. 87, 479–502 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, Y., Li, Y. & Li, X. Strategies for developing DNA encoded libraries beyond binding assays. Nat. Chem. 14, 129–140 (2022).

    CAS  PubMed  Google Scholar 

  25. Song, Y. & Li, X. Evolution of the selection methods of DNA-encoded chemical libraries. Acc. Chem. Res. 54, 3491–3503 (2021).

    CAS  PubMed  Google Scholar 

  26. Huang, Y. & Li, X. Recent advances on the selection methods of DNA-encoded libraries. ChemBioChem 22, 2384–2397 (2021).

    CAS  PubMed  Google Scholar 

  27. Kodadek, T., Paciaroni, N. G., Balzarini, M. & Dickson, P. Beyond protein binding: recent advances in screening DNA-encoded libraries. Chem. Commun. 55, 13330–13341 (2019).

    CAS  Google Scholar 

  28. Dawadi, S. et al. Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library. Proc. Natl Acad. Sci. USA 117, 16782–16789 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gironda-Martínez, A. et al. Identification and validation of new interleukin-2 ligands using DNA-encoded libraries. J. Med. Chem. 64, 17496–17510 (2021).

    PubMed  Google Scholar 

  30. Taylor, D. M. et al. Identifying oxacillinase-48 carbapenemase inhibitors using DNA-encoded chemical libraries. ACS Infect. Dis. 6, 1214–1227 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Steffek, M. et al. A multifaceted hit-finding approach reveals novel LC3 family ligands. Biochemistry 62, 633–644 (2023).

    CAS  PubMed  Google Scholar 

  32. Scott, D. E., Bayly, A. R., Abell, C. & Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016).

    CAS  PubMed  Google Scholar 

  33. Peterson, A. A. et al. Discovery and molecular basis of subtype-selective cyclophilin inhibitors. Nat. Chem. Biol. 18, 1184–1195 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Usanov, D. L., Chan, A. I., Maianti, J. P. & Liu, D. R. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules. Nat. Chem. 10, 704–714 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kunig, V. B. K. et al. TEAD–YAP interaction inhibitors and MDM2 binders from DNA-encoded indole-focused Ugi peptidomimetics. Angew. Chem. Int. Ed. 59, 20338–20342 (2020).

    CAS  Google Scholar 

  36. Johannes, J. W. et al. Structure based design of non-natural peptidic macrocyclic Mcl-1 inhibitors. ACS Med. Chem. Lett. 8, 239–244 (2017).

    CAS  PubMed  Google Scholar 

  37. Wellaway, C. R. et al. Discovery of a bromodomain and extraterminal inhibitor with a low predicted human dose through synergistic use of encoded library technology and fragment screening. J. Med. Chem. 63, 714–746 (2020).

    CAS  PubMed  Google Scholar 

  38. Fernández-Montalván, A. E. et al. Isoform-selective ATAD2 chemical probe with novel chemical structure and unusual mode of action. ACS Chem. Biol. 12, 2730–2736 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Lomas, D. A. et al. Development of a small molecule that corrects misfolding and increases secretion of Z α1‐antitrypsin. EMBO Mol. Med. 13, e13167 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuen, L. H. et al. A focused DNA-encoded chemical library for the discovery of inhibitors of NAD+-dependent enzymes. J. Am. Chem. Soc. 141, 5169–5181 (2019).

    CAS  PubMed  Google Scholar 

  41. Lemke, M. et al. Integrating DNA-encoded chemical libraries with virtual combinatorial library screening: optimizing a PARP10 inhibitor. Bioorg. Med. Chem. Lett. 30, 127464 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. MacHutta, C. A. et al. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nat. Commun. 8, 16081 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Concha, N. et al. Discovery and characterization of a class of pyrazole inhibitors of bacterial undecaprenyl pyrophosphate synthase. J. Med. Chem. 59, 7299–7304 (2016).

    CAS  PubMed  Google Scholar 

  44. Chamakuri, S. et al. DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 Mpro inhibitors. Proc. Natl Acad. Sci. USA 118, 8–13 (2021).

    Google Scholar 

  45. Podolin, P. L. et al. In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor. Prostaglandins Other Lipid Mediat. 104–105, 25–31 (2013).

    PubMed  Google Scholar 

  46. Belyanskaya, S. L., Ding, Y., Callahan, J. F., Lazaar, A. L. & Israel, D. I. Discovering drugs with DNA-encoded library technology: from concept to clinic with an inhibitor of soluble epoxide hydrolase. ChemBioChem 18, 837–842 (2017).

    CAS  PubMed  Google Scholar 

  47. Ding, Y. et al. Discovery of soluble epoxide hydrolase inhibitors through DNA-encoded library technology (ELT). Bioorg. Med. Chem. 41, 116216 (2021).

    CAS  PubMed  Google Scholar 

  48. Ding, Y., Thalji, R. K. & Marino, J. P. J. Novel sEH inhibitors and their use. Patent WO2009049157A1 (2009).

  49. Ottl, J., Leder, L., Schaefer, J. V. & Dumelin, C. E. Encoded library technologies as integrated lead finding platforms for drug discovery. Molecules 24, 1629 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Satz, A. L. What do you get from DNA-encoded libraries? ACS Med. Chem. Lett. 9, 408–410 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Arico-Muendel, C. C. From haystack to needle: finding value with DNA encoded library technology at GSK. MedChemComm 7, 1898–1909 (2016).

    CAS  Google Scholar 

  52. Lazaar, A. L., Baines, A., Ahmed, M., Boardley, R. & Hussaini, A. Inhibition of soluble epoxide hydrolase does not augment hypoxic pulmonary vasoconstriction in healthy subjects. Am. J. Respir. Crit. Care Med. 193, A6840 (2016).

    Google Scholar 

  53. Lazaar, A. L. et al. Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor. Br. J. Clin. Pharmacol. 81, 971–979 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, L. et al. Mechanisms of vascular dysfunction in COPD and effects of a novel soluble epoxide hydrolase inhibitor in smokers. Chest 151, 555–563 (2017).

    PubMed  Google Scholar 

  55. Martini, R. P. et al. A double-blind, randomized, placebo-controlled trial of soluble epoxide hydrolase inhibition in patients with aneurysmal subarachnoid hemorrhage. Neurocrit. Care 36, 905–915 (2022).

    CAS  PubMed  Google Scholar 

  56. Luther, J. M. et al. GSK2256294 decreases sEH (soluble epoxide hydrolase) activity in plasma, muscle, and adipose and reduces F2-isoprostanes but does not alter insulin sensitivity in humans. Hypertension 78, 1092–1102 (2021).

    CAS  PubMed  Google Scholar 

  57. Harris, P. A. et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem. 59, 2163–2178 (2016).

    CAS  PubMed  Google Scholar 

  58. Harris, P. A. et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J. Med. Chem. 60, 1247–1261 (2017).

    CAS  PubMed  Google Scholar 

  59. Weisel, K. et al. Randomized clinical study of safety, pharmacokinetics, and pharmacodynamics of RIPK1 inhibitor GSK2982772 in healthy volunteers. Pharmacol. Res. Perspect. 5, e00365 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Tompson, D. J. et al. Comparison of the pharmacokinetics of RIPK1 inhibitor GSK2982772 in healthy Western and Japanese subjects. Eur. J. Drug Metab. Pharmacokinet. 46, 71–83 (2020).

    PubMed Central  Google Scholar 

  61. Tompson, D. J. et al. Development of a prototype, once-daily, modified-release formulation for the short half-life RIPK1 inhibitor GSK2982772. Pharm. Res. 38, 1235–1245 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tompson, D. et al. Development of a once-daily modified-release formulation for the short half-life RIPK1 inhibitor GSK2982772 using DiffCORE technology. Pharm. Res. 39, 153–165 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Weisel, K. et al. Response to inhibition of receptor-interacting protein kinase 1 (RIPK1) in active plaque psoriasis: a randomized placebo-controlled study. Clin. Pharmacol. Ther. 108, 808–816 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Weisel, K. et al. A randomized, placebo-controlled experimental medicine study of RIPK1 inhibitor GSK2982772 in patients with moderate to severe rheumatoid arthritis. Arthritis Res. Ther. 23, 85 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Weisel, K. et al. A randomised, placebo-controlled study of RIPK1 inhibitor GSK2982772 in patients with active ulcerative colitis. BMJ Open Gastroenterol. 8, e000680 (2021).

    PubMed  PubMed Central  Google Scholar 

  66. Xia, C. et al. Structure-based bioisosterism design of thio-benzoxazepinones as novel necroptosis inhibitors. Eur. J. Med. Chem. 220, 113484 (2021).

    CAS  PubMed  Google Scholar 

  67. Yoshikawa, M. et al. Discovery of 7-Oxo-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-c] pyridine derivatives as potent, orally available, and brain-penetrating receptor interacting protein 1 (RIP1) kinase inhibitors: analysis of structure-kinetic relationships. J. Med. Chem. 61, 2384–2409 (2018).

    CAS  PubMed  Google Scholar 

  68. Wang, W. et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell 34, 757–774.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Harris, P. A. et al. Identification of a RIP1 kinase inhibitor clinical candidate (GSK3145095) for the treatment of pancreatic cancer. ACS Med. Chem. Lett. 10, 857–862 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cuozzo, J. W. et al. Novel autotaxin inhibitor for the treatment of idiopathic pulmonary fibrosis: a clinical candidate discovered using DNA-encoded chemistry. J. Med. Chem. 63, 7840–7856 (2020).

    CAS  PubMed  Google Scholar 

  71. Richter, H. et al. DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome. ACS Chem. Biol. 14, 37–49 (2019).

    CAS  PubMed  Google Scholar 

  72. Rianjongdee, F. et al. Discovery of a highly selective BET BD2 inhibitor from a DNA-encoded library technology screening hit. J. Med. Chem. 64, 10806–10833 (2021).

    CAS  PubMed  Google Scholar 

  73. Disch, J. S. et al. Bispecific estrogen receptor α degraders incorporating novel binders identified using DNA-encoded chemical library screening. J. Med. Chem. 64, 5049–5066 (2021).

    CAS  PubMed  Google Scholar 

  74. Veerman, J. J. N. et al. Discovery of 2,4-1 H-imidazole carboxamides as potent and selective TAK1 inhibitors. ACS Med. Chem. Lett. 12, 555–562 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu, Z. et al. Discovery and characterization of bromodomain 2-specific inhibitors of BRDT. Proc. Natl Acad. Sci. USA 118, e2021102118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, E. C. Y. et al. Discovery of novel, potent inhibitors of hydroxy acid oxidase 1 (HAO1) using DNA-encoded chemical library screening. J. Med. Chem. 64, 6730–6744 (2021).

    CAS  PubMed  Google Scholar 

  77. Ryan, M. D. et al. Discovery of novel UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors with activity against Pseudomonas aeruginosa. J. Med. Chem. 64, 14377–14425 (2021).

    CAS  PubMed  Google Scholar 

  78. Kung, P. P. et al. Characterization of specific N-α-acetyltransferase 50 (Naa50) inhibitors identified using a DNA encoded library. ACS Med. Chem. Lett. 11, 1175–1184 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bassi, G. et al. A single-stranded DNA-encoded chemical library based on a stereoisomeric scaffold enables ligand discovery by modular assembly of building blocks. Adv. Sci. 7, 2001970 (2020).

    CAS  Google Scholar 

  80. Favalli, N. et al. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat. Chem. 13, 540–548 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bassi, G. et al. Specific inhibitor of placental alkaline phosphatase isolated from a DNA-encoded chemical library targets tumor of the female reproductive tract. J. Med. Chem. 64, 15799–15809 (2021).

    CAS  PubMed  Google Scholar 

  82. Cuozzo, J. W. et al. Discovery of a potent BTK inhibitor with a novel binding mode by using parallel selections with a DNA-encoded chemical library. ChemBioChem 18, 864–871 (2017).

    CAS  PubMed  Google Scholar 

  83. Guilinger, J. P. et al. Novel irreversible covalent BTK inhibitors discovered using DNA-encoded chemistry. Bioorg. Med. Chem. 42, 116223 (2021).

    CAS  PubMed  Google Scholar 

  84. Nissink, J. W. M. et al. Generating selective leads for Mer kinase inhibitors — example of a comprehensive lead-generation strategy. J. Med. Chem. 64, 3165–3184 (2021).

    CAS  PubMed  Google Scholar 

  85. McCoull, W. et al. Optimization of an Imidazo[1,2-a]pyridine series to afford highly selective type I1/2 dual Mer/Axl kinase inhibitors with in vivo efficacy. J. Med. Chem. 64, 13524–13539 (2021).

    CAS  PubMed  Google Scholar 

  86. Brown, D. G. et al. Agonists and antagonists of protease-activated receptor 2 discovered within a DNA-encoded chemical library using mutational stabilization of the target. SLAS Discov. 23, 429–436 (2018).

    CAS  PubMed  Google Scholar 

  87. Kennedy, A. J. et al. Protease-activated receptor-2 ligands reveal orthosteric and allosteric mechanisms of receptor inhibition. Commun. Biol. 3, 782 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cheng, R. K. Y. et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545, 112–115 (2017).

    CAS  PubMed  Google Scholar 

  89. Carey, R. M. et al. Polarization of protease-activated receptor 2 (PAR-2) signaling is altered during airway epithelial remodeling and deciliation. J. Biol. Chem. 295, 6721–6740 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, X. et al. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging 11, 12532–12545 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun, L. et al. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 mitigates oxidized low-density lipoprotein (Ox-LDL)-induced damage and endothelial inflammation. Chem. Res. Toxicol. 34, 2202–2208 (2021).

    CAS  PubMed  Google Scholar 

  92. Ahn, S. et al. Allosteric ‘beta-blocker’ isolated from a DNA-encoded small molecule library. Proc. Natl Acad. Sci. USA 114, 1708–1713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, X. et al. Mechanism of intracellular allosteric β2 AR antagonist revealed by X-ray crystal structure. Nature 548, 480–484 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ahn, S. et al. Small-molecule positive allosteric modulators of the β2-adrenoceptor isolated from DNA-encoded libraries. Mol. Pharmacol. 94, 850–861 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, X. et al. Mechanism of β2AR regulation by an intracellular positive allosteric modulator. Science 364, 1283–1287 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, J. et al. β-Arrestin–biased allosteric modulator potentiates carvedilol-stimulated β adrenergic receptor cardioprotection. Mol. Pharmacol. 100, 568–579 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou, Y., Shen, W., Peng, J., Deng, Y. & Li, X. Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg. Med. Chem. 45, 116328 (2021).

    CAS  PubMed  Google Scholar 

  98. Kim, D. et al. Application of a substrate-mediated selection with c-Src tyrosine kinase to a DNA-encoded chemical library. Molecules 24, 2764 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Litovchick, A. et al. Novel nucleic acid binding small molecules discovered using DNA-encoded chemistry. Molecules 24, 2026 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Denton, K. E. et al. Robustness of in vitro selection assays of DNA-encoded peptidomimetic ligands to CBX7 and CBX8. SLAS Discov. 23, 417–428 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, S. et al. Optimization of ligands using focused DNA-encoded libraries to develop a selective, cell-permeable CBX8 chromodomain inhibitor. ACS Chem. Biol. 15, 112–131 (2020).

    CAS  PubMed  Google Scholar 

  102. Wang, S. et al. A potent, selective CBX2 chromodomain ligand and its cellular activity during prostate cancer neuroendocrine differentiation. ChemBioChem 22, 2335–2344 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, Z. et al. Cell-based selection expands the utility of DNA-encoded small-molecule library technology to cell surface drug targets: identification of novel antagonists of the NK3 tachykinin receptor. ACS Comb. Sci. 17, 722–731 (2015).

    CAS  PubMed  Google Scholar 

  104. Cochrane, W. G., Fitzgerald, P. R. & Paegel, B. M. Antibacterial discovery via phenotypic DNA-encoded library screening. ACS Chem. Biol. 16, 2752–2756 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mendes, K. R. et al. High-throughput identification of DNA-encoded IgG ligands that distinguish active and latent Mycobacterium tuberculosis infections. ACS Chem. Biol. 12, 234–243 (2017).

    CAS  PubMed  Google Scholar 

  106. Doran, T. M. & Kodadek, T. A liquid array platform for the multiplexed analysis of synthetic molecule-protein interactions. ACS Chem. Biol. 9, 339–346 (2014).

    CAS  PubMed  Google Scholar 

  107. Huang, Y., Deng, Y., Zhang, J., Meng, L. & Li, X. Direct ligand screening against membrane proteins on live cells enabled by DNA-programmed affinity labelling. Chem. Commun. 57, 3769–3772 (2021).

    CAS  Google Scholar 

  108. Huang, Y. et al. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat. Chem. 13, 77–88 (2021).

    PubMed  Google Scholar 

  109. Plais, L. & Scheuermann, J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem. Biol. 3, 7–17 (2022).

    CAS  PubMed  Google Scholar 

  110. Ge, R. et al. Discovery of SARS-CoV-2 main protease covalent inhibitors from a DNA-encoded library selection. SLAS Discov. 27, 79–85 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, L. et al. Triazine-based covalent DNA-encoded libraries for discovery of covalent inhibitors of target proteins. ACS Med. Chem. Lett. 13, 1574–1581 (2022).

    CAS  PubMed  Google Scholar 

  112. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhong, Y. et al. Emerging targeted protein degradation tools for innovative drug discovery: from classical PROTACs to the novel and beyond. Eur. J. Med. Chem. 231, 114142 (2022).

    CAS  PubMed  Google Scholar 

  115. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    PubMed  PubMed Central  Google Scholar 

  116. Modell, A. E., Lai, S., Nguyen, T. M. & Choudhary, A. Bifunctional modalities for repurposing protein function. Cell Chem. Biol. 28, 1081–1089 (2021).

    CAS  PubMed  Google Scholar 

  117. Belcher, B. P., Ward, C. C. & Nomura, D. K. Ligandability of E3 ligases for targeted protein degradation applications. Biochemistry 62, 588–600 (2023).

    CAS  PubMed  Google Scholar 

  118. Faust, T. B., Donovan, K. A., Yue, H., Chamberlain, P. P. & Fischer, E. S. Small-molecule approaches to targeted protein degradation. Annu. Rev. Cancer Biol. 5, 181–201 (2020).

    Google Scholar 

  119. Gerry, C. J. & Schreiber, S. L. Unifying principles of bifunctional, proximity-inducing small molecules. Nat. Chem. Biol. 16, 369–378 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Winter, G. E. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. 55, 807–810 (2016).

    CAS  Google Scholar 

  122. Cowan, A. D. & Ciulli, A. Driving E3 ligase substrate specificity for targeted protein degradation: lessons from nature and the laboratory. Annu. Rev. Biochem. 91, 295–319 (2022).

    PubMed  Google Scholar 

  123. Kramer, L. T. & Zhang, X. Expanding the landscape of E3 ligases for targeted protein degradation. Curr. Res. Chem. Biol. 2, 100020 (2022).

    CAS  Google Scholar 

  124. Chana, C. K. et al. Discovery and structural characterization of small molecule binders of the human CTLH E3 ligase subunit GID4. J. Med. Chem. 65, 12725–12746 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mason, J. W. et al. DNA-encoded library (DEL)-enabled discovery of proximity-inducing small molecules. Preprint at bioRxiv https://doi.org/10.1101/2022.10.13.512184 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chen, Q. et al. Optimization of PROTAC ternary complex using DNA encoded library approach. ACS Chem. Biol. 18, 25–33 (2023).

    CAS  PubMed  Google Scholar 

  127. Shin, M. H., Lee, K. J. & Lim, H. S. DNA-encoded combinatorial library of macrocyclic peptoids. Bioconjug. Chem. 30, 2931–2938 (2019).

    CAS  PubMed  Google Scholar 

  128. Lee, K. J., Bang, G., Kim, Y. W., Shin, M. H. & Lim, H. S. Design and synthesis of a DNA-encoded combinatorial library of bicyclic peptoids. Bioorg. Med. Chem. 48, 116423 (2021).

    CAS  PubMed  Google Scholar 

  129. Cochrane, W. G. et al. Activity-based DNA-encoded library screening. ACS Comb. Sci. 21, 425–435 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. MacConnell, A. B., Price, A. K. & Paegel, B. M. An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS Comb. Sci. 19, 181–192 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Benhamou, R. I. et al. DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proc. Natl Acad. Sci. USA 119, e2114971119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, Q. et al. Expanding the DNA-encoded library toolbox: identifying small molecules targeting RNA. Nucleic Acids Res. 50, E67 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chan, A. I., McGregor, L. M., Jain, T. & Liu, D. R. Discovery of a covalent kinase inhibitor from a DNA-encoded small-molecule library × protein library selection. J. Am. Chem. Soc. 139, 10192–10195 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, D. Y. et al. Target identification of kinase inhibitor alisertib (MLN8237) by using DNA-programmed affinity labeling. Chemistry 23, 10906–10914 (2017).

    CAS  PubMed  Google Scholar 

  135. Xie, J. et al. Selection of small molecules that bind to and activate the insulin receptor from a DNA-encoded library of natural products. iScience 23, 101197 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, J. et al. A DNA-encoded library for the identification of natural product binders that modulate poly (ADP-ribose) polymerase 1, a validated anti-cancer target. Biochem. Biophys. Res. Commun. 533, 241–248 (2020).

    CAS  PubMed  Google Scholar 

  137. Wichert, M. et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015).

    CAS  PubMed  Google Scholar 

  138. Kulterer, O. C. et al. A microdosing study with 99mTc-PHC-102 for the SPECT/CT imaging of primary and metastatic lesions in renal cell carcinoma patients. J. Nucl. Med. 62, 360–365 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Petersen, L. K. et al. Screening of DNA-encoded small molecule libraries inside a living cell. J. Am. Chem. Soc. 143, 2751–2756 (2021).

    CAS  PubMed  Google Scholar 

  140. Cai, B. et al. Selection of DNA-encoded libraries to protein targets within and on living cells. J. Am. Chem. Soc. 141, 17057–17061 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. McCloskey, K. et al. Machine learning on DNA-encoded libraries: a new paradigm for hit finding. J. Med. Chem. 63, 8857–8866 (2020).

    CAS  PubMed  Google Scholar 

  142. Xiong, F. et al. Discovery of TIGIT inhibitors based on DEL and machine learning. Front. Chem. 10, 982539 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Gartner, Z. J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Halpin, D. R. & Harbury, P. B. DNA display I. Sequence-encoded routing of DNA populations. PLoS Biol. 2, 1015–1021 (2004).

    CAS  Google Scholar 

  145. Staz, A. L. et al. DNA-encoded chemical libraries. Nat. Rev. Methods Primers 2, 3 (2022).

    Google Scholar 

  146. MacConnell, A. B., McEnaney, P. J., Cavett, V. J. & Paegel, B. M. DNA-encoded solid-phase synthesis: encoding language design and complex oligomer library synthesis. ACS Comb. Sci. 17, 518–534 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hackler, A. L., Fitzgerald, F. G., Dang, V. Q., Satz, A. L. & Paegel, B. M. Off-DNA DNA-encoded library affinity screening. ACS Comb. Sci. 22, 25–34 (2020).

    CAS  PubMed  Google Scholar 

  148. Roy, A., Koesema, E. & Kodadek, T. High-throughput quality control assay for the solid-phase synthesis of DNA-encoded libraries of macrocycles. Angew. Chem. Int. Ed. 60, 11983–11990 (2021).

    CAS  Google Scholar 

  149. Mcgregor, L. M., Jain, T. & Liu, D. R. Identification of ligand − Target pairs from combined libraries of small molecules and unpurified protein targets in cell lysates. J. Am. Chem. Soc. 136, 3264–3270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Blakskjaer, P., Heitner, T. & Hansen, N. J. V. Fidelity by design: yoctoReactor and binder trap enrichment for small-molecule DNA-encoded libraries and drug discovery. Curr. Opin. Chem. Biol. 26, 62–71 (2015).

    CAS  PubMed  Google Scholar 

  151. Kochmann, S., Le, A. T. H., Hili, R. & Krylov, S. N. Predicting efficiency of NECEEM-based partitioning of protein binders from nonbinders in DNA-encoded libraries. Electrophoresis 39, 2991–2996 (2018).

    CAS  PubMed  Google Scholar 

  152. Bao, J. et al. Predicting electrophoretic mobility of protein–ligand complexes for ligands from DNA-encoded libraries of small molecules. Anal. Chem. 88, 5498–5506 (2016).

    CAS  PubMed  Google Scholar 

  153. Zhao, P. et al. Selection of DNA-encoded small molecule libraries against unmodified and non-immobilized protein targets. Angew. Chem. Int. Ed. 53, 10056–10059 (2014).

    CAS  Google Scholar 

  154. Shi, B., Deng, Y., Zhao, P. & Li, X. Selecting a DNA-encoded chemical library against non-immobilized proteins using a ‘ligate-cross-link-purify’ strategy. Bioconjug. Chem. 28, 2293–2301 (2017).

    CAS  PubMed  Google Scholar 

  155. Sannino, A. et al. Critical evaluation of photo-cross-linking parameters for the implementation of efficient DNA-encoded chemical library selections. ACS Comb. Sci. 22, 204–212 (2020).

    CAS  PubMed  Google Scholar 

  156. Denton, K. E. & Krusemark, C. J. Crosslinking of DNA-linked ligands to target proteins for enrichment from DNA-encoded libraries. MedChemComm 7, 2020–2027 (2016).

    CAS  PubMed  Google Scholar 

  157. Ma, H. et al. PAC-FragmentDEL - photoactivated covalent capture of DNA-encoded fragments for hit discovery. RSC Med. Chem. 13, 1341–1349 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhou, Y. et al. DNA-encoded dynamic chemical library and its applications in ligand discovery. J. Am. Chem. Soc. 140, 15859–15867 (2018).

    CAS  PubMed  Google Scholar 

  159. Reddavide, F. V., Lin, W., Lehnert, S. & Zhang, Y. DNA-encoded dynamic combinatorial chemical libraries. Angew. Chem. Int. Ed. 54, 7924–7928 (2015).

    CAS  Google Scholar 

  160. Deng, Y. et al. Selection of DNA-encoded dynamic chemical libraries for direct inhibitor discovery. Angew. Chem. Int. Ed. 59, 14965–14972 (2020).

    CAS  Google Scholar 

  161. Oehler, S. et al. Affinity selections of DNA-encoded chemical libraries on carbonic anhydrase IX-expressing tumor cells reveal a dependence on ligand valence. Chemistry 27, 8985–8993 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Vieira for her valuable assistance and input. They thank M. O’Reilly for contributing DNA-encoded library architecture and selection figures. This work was supported by NIH R35 GM118062 and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Liu.

Ethics declarations

Competing interests

A.A.P. and D.R.L. are co-inventors on patent applications on DNA-encoded libraries and their applications. D.R.L. is a consultant and co-founder of Exo Therapeutics, a company that uses DNA-encoded libraries.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClincalTrials.gov: https://clinicaltrials.gov/ct2/home

Protein Data Bank: https://www.rcsb.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, A.A., Liu, D.R. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 22, 699–722 (2023). https://doi.org/10.1038/s41573-023-00713-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00713-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research