Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of non-coding RNAs in neuroblastoma

Abstract

Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of miRNAs and miRNA inhibitors in NB.
Fig. 2: Classification of long-non-coding RNAs based on the localization within the genome.
Fig. 3: Generation of three types of circular RNA.
Fig. 4: Effect of extracellular vesicles on growth of tumor cells and their metastatic potential in NB [116].

Similar content being viewed by others

Data availabilty

The primary data for this study is available from the authors on request.

References

  1. Gao T, Wang M, Xu L, Wen T, Liu J, An G. DCLK1 is up-regulated and associated with metastasis and prognosis in colorectal cancer. J Cancer Res Clin Oncol. 2016;142:2131–40.

    Article  CAS  PubMed  Google Scholar 

  2. Luksch R, Podda M, Gandola L, Polastri D, Piva L, Castellani R, et al. Stage 4 neuroblastoma: sequential hemi-body irradiation or high-dose chemotherapy plus autologous haemopoietic stem cell transplantation to consolidate primary treatment. Br J Cancer. 2005;92:1984–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luksch R, Castellani MR, Collini P, De Bernardi B, Conte M, Gambini C, et al. Neuroblastoma (Peripheral neuroblastic tumours). Crit Rev Oncol Hematol. 2016;107:163–81.

    Article  PubMed  Google Scholar 

  4. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3:203–16.

    Article  CAS  PubMed  Google Scholar 

  5. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    Article  CAS  PubMed  Google Scholar 

  6. Caron H. Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol. 1995;24:215–21.

    Article  CAS  PubMed  Google Scholar 

  7. Caron H, van Sluis P, de Kraker J, Bökkerink J, Egeler M, Laureys G, et al. Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N. Engl J Med. 1996;334:225–30.

    Article  CAS  PubMed  Google Scholar 

  8. Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5−a population-based study. Lancet Oncol. 2014;15:35–47.

    Article  PubMed  Google Scholar 

  9. Trama A, Botta L, Foschi R, Ferrari A, Stiller C, Desandes E, et al. Survival of European adolescents and young adults diagnosed with cancer in 2000-07: population-based data from EUROCARE-5. Lancet Oncol. 2016;17:896–906.

    Article  PubMed  Google Scholar 

  10. Khani P, Nasri F, Khani Chamani F, Saeidi F, Sadri Nahand J, Tabibkhooei A, et al. Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem. 2019;148:188–203.

    Article  CAS  PubMed  Google Scholar 

  11. Mirzaei H, Hamblin MR. Regulation of glycolysis by non-coding RNAs in cancer: switching on the Warburg effect. Mol Ther Oncolytics. 2020;19:218–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, et al. Ultraconserved elements in the human genome. Science. 2004;304:1321–5.

    Article  CAS  PubMed  Google Scholar 

  13. Johnsson P, Lipovich L, Grandér D, Morris KV. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 2014;1840:1063–71.

    Article  CAS  PubMed  Google Scholar 

  14. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004; 306:636-40.

  16. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 2018;75:467–84.

    Article  CAS  PubMed  Google Scholar 

  18. Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.

    Article  PubMed  Google Scholar 

  19. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8:450–61.

    Article  CAS  PubMed  Google Scholar 

  20. Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11:849–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  22. Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells. 2005;19:1–15.

    CAS  PubMed  Google Scholar 

  23. Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460–71.

    Article  PubMed  Google Scholar 

  24. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R. miR-148 targets human DNMT3b protein coding region. Rna. 2008;14:872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455:64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol. 2010;42:1316–29.

    Article  CAS  PubMed  Google Scholar 

  27. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Ann Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  28. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–4.

    Article  CAS  PubMed  Google Scholar 

  29. Calin GA. MicroRNAs and cancer: what we know and what we still have to learn. Genome Med. 2009;1:78.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM, et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS ONE. 2009;4:e7850.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang S, Olson EN. AngiomiRs−key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19:205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67:976–83.

    Article  CAS  PubMed  Google Scholar 

  33. Mestdagh P, Fredlund E, Pattyn F, Schulte JH, Muth D, Vermeulen J, et al. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene. 2010;29:1394–404.

    Article  CAS  PubMed  Google Scholar 

  34. Tivnan A, Foley NH, Tracey L, Davidoff AM, Stallings RL. MicroRNA-184-mediated inhibition of tumour growth in an orthotopic murine model of neuroblastoma. Anticancer Res. 2010;30:4391–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bray I, Tivnan A, Bryan K, Foley NH, Watters KM, Tracey L, et al. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett. 2011;303:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE. 2008;3:e2236.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schulte JH, Schowe B, Mestdagh P, Kaderali L, Kalaghatgi P, Schlierf S, et al. Accurate prediction of neuroblastoma outcome based on miRNA expression profiles. Int J Cancer. 2010;127:2374–85.

    Article  CAS  PubMed  Google Scholar 

  38. Tivnan A, Tracey L, Buckley PG, Alcock LC, Davidoff AM, Stallings RL. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer. 2011;11:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu Y, Maruyama J, Kuwata K, Fukuda H, Iwasa H, Arimoto-Matsuzaki K, et al. Doublecortin-like kinase 1 compromises DNA repair and induces chromosomal instability. Biochem Biophys Rep. 2018;16:130–7.

    PubMed  PubMed Central  Google Scholar 

  40. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22.

    Article  CAS  PubMed  Google Scholar 

  41. Chandrakesan P, May R, Weygant N, Qu D, Berry WL, Sureban SM, et al. Intestinal tuft cells regulate the ATM mediated DNA Damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury. Sci Rep. 2016;6:37667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chandrakesan P, Yao J, Qu D, May R, Weygant N, Ge Y, et al. Dclk1, a tumor stem cell marker, regulates pro-survival signaling and self-renewal of intestinal tumor cells. Mol Cancer. 2017;16:30.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sureban SM, May R, Qu D, Weygant N, Chandrakesan P, Ali N, et al. DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer. PLoS ONE. 2013;8:e73940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suehiro Y, Takemoto Y, Nishimoto A, Ueno K, Shirasawa B, Tanaka T, et al. Dclk1 inhibition cancels 5-FU-induced cell-cycle arrest and decreases cell survival in colorectal cancer. Anticancer Res. 2018;38:6225–30.

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Wang Y, Ge J, Li W, Yin L, Zhao Z, et al. Doublecortin-Like kinase 1 (DCLK1) regulates B cell-specific moloney murine leukemia virus insertion site 1 (Bmi-1) and is associated with metastasis and prognosis in pancreatic cancer. Cell Physiol Biochem. 2018;51:262–77.

    Article  CAS  PubMed  Google Scholar 

  46. Mallick S, D’Mello SR. JAZ (Znf346), a SIRT1-interacting protein, protects neurons by stimulating p21 (WAF/CIP1) protein expression. J Biol Chem. 2014;289:35409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu T, Lin Y, Xie Z. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma. Biol Res. 2018;51:13.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wei Q, Guo Z, Chen D, Jia X. MiR-542-3p Suppresses Neuroblastoma Cell Proliferation and Invasion by Downregulation of KDM1A and ZNF346. Open Life Sci. 2020;15:173–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aguilar-Cuenca R, Juanes-García A, Vicente-Manzanares M. Myosin II in mechanotransduction: master and commander of cell migration, morphogenesis, and cancer. Cell Mol Life Sci. 2014;71:479–92.

    Article  CAS  PubMed  Google Scholar 

  50. Liang S, He L, Zhao X, Miao Y, Gu Y, Guo C, et al. MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS ONE. 2011;6:e18409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murthy K, Wadsworth P. Myosin-II-dependent localization and dynamics of F-actin during cytokinesis. Curr Biol. 2005;15:724–31.

    Article  CAS  PubMed  Google Scholar 

  52. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chao C, Lotz MM, Clarke AC, Mercurio AM. A function for the integrin alpha6beta4 in the invasive properties of colorectal carcinoma cells. Cancer Res. 1996;56:4811–9.

    CAS  PubMed  Google Scholar 

  54. Lu S, Simin K, Khan A, Mercurio AM. Analysis of integrin beta4 expression in human breast cancer: association with basal-like tumors and prognostic significance. Clin Cancer Res. 2008;14:1050–8.

    Article  CAS  PubMed  Google Scholar 

  55. Liu W, Wang S, Sun Q, Yang Z, Liu M, Tang H. DCLK1 promotes epithelial-mesenchymal transition via the PI3K/Akt/NF-κB pathway in colorectal cancer. Int J Cancer. 2018;142:2068–79.

    Article  CAS  PubMed  Google Scholar 

  56. Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, et al. A novel mammalian flavin-dependent histone demethylase. J Biol Chem. 2009;284:17775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wan MF, Yang N, Qu NY, Pan YY, Shan YQ, Li P. MiR-424 suppressed viability and invasion by targeting to the DCLK1 in neuroblastoma. Eur Rev Med Pharm Sci. 2020;24:5526–33.

    Google Scholar 

  58. Bennani-Baiti IM, Machado I, Llombart-Bosch A, Kovar H. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum Pathol. 2012;43:1300–7.

    Article  CAS  PubMed  Google Scholar 

  59. Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenet Chromatin. 2018;11:33.

    Article  Google Scholar 

  60. Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell. 2005;19:857–64.

    Article  CAS  PubMed  Google Scholar 

  61. Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 2006;66:11341–7.

    Article  CAS  PubMed  Google Scholar 

  62. Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch LK, Höller T, et al. H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol. 2010;41:181–9.

    Article  CAS  PubMed  Google Scholar 

  63. Kong L, Zhang P, Li W, Yang Y, Tian Y, Wang X, et al. KDM1A promotes tumor cell invasion by silencing TIMP3 in non-small cell lung cancer cells. Oncotarget. 2016;7:27959–74.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sareddy GR, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi RK. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423–34.

    Article  CAS  PubMed  Google Scholar 

  65. O’Reilly JA, Fitzgerald J, Fitzgerald S, Kenny D, Kay EW, O’Kennedy R, et al. Diagnostic potential of zinc finger protein-specific autoantibodies and associated linear B-cell epitopes in colorectal cancer. PLoS ONE. 2015;10:e0123469.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lewin J, Soria JC, Stathis A, Delord JP, Peters S, Awada A, et al. Phase Ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J Clin Oncol. 2018;36:3007–14.

    Article  CAS  PubMed  Google Scholar 

  67. Stathis A, Zucca E, Bekradda M, Gomez-Roca C, Delord JP, de La Motte Rouge T, et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Disco. 2016;6:492–500.

    Article  CAS  Google Scholar 

  68. Liu C, Gen Y, Tanimoto K, Muramatsu T, Inoue J, Inazawa J. Concurrent targeting of MAP3K3 and BRD4 by miR-3140-3p overcomes acquired resistance to BET inhibitors in neuroblastoma cells. Mol Ther Nucleic Acids. 2021;25:83–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. 2000;12:85–98.

    Article  CAS  PubMed  Google Scholar 

  70. Pacifico F, Leonardi A. NF-kappaB in solid tumors. Biochem Pharm. 2006;72:1142–52.

    Article  CAS  PubMed  Google Scholar 

  71. Xiong S, Wang Y, Li H, Zhang X. Low dose of bisphenol A activates NF-κB/IL-6 signals to increase malignancy of neuroblastoma cells. Cell Mol Neurobiol. 2017;37:1095–103.

    Article  CAS  PubMed  Google Scholar 

  72. Häcker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006;2006:re13.

    Article  PubMed  Google Scholar 

  73. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18:2195–224.

    Article  CAS  PubMed  Google Scholar 

  74. Kaisho T, Tanaka T. Turning NF-kappaB and IRFs on and off in DC. Trends Immunol. 2008;29:329–36.

    Article  CAS  PubMed  Google Scholar 

  75. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.

    Article  CAS  PubMed  Google Scholar 

  76. Yu J, Wang L, Zhang T, Shen H, Dong W, Ni Y, et al. Co-expression of β-arrestin1 and NF-кB is associated with cancer progression and poor prognosis in lung adenocarcinoma. Tumour Biol. 2015;36:6551–8.

    Article  CAS  PubMed  Google Scholar 

  77. Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death−a new approach to cancer therapy. J Clin Invest. 2005;115:2625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell. 1998;1:543–51.

    Article  CAS  PubMed  Google Scholar 

  79. Nolan JC, Salvucci M, Carberry S, Barat A, Segura MF, Fenn J, et al. A context-dependent role for MiR-124-3p on cell phenotype, viability and chemosensitivity in neuroblastoma in vitro. Front Cell Dev Biol. 2020;8:559553.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sutoh Yoneyama M, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, et al. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol. 2014;93:157–69.

    Article  CAS  PubMed  Google Scholar 

  81. Kreissman SG, Seeger RC, Matthay KK, London WB, Sposto R, Grupp SA, et al. Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol. 2013;14:999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA. 2012;109:9545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell. 2014;159:1126–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer. 2012;12:465–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Henssen A, Althoff K, Odersky A, Beckers A, Koche R, Speleman F, et al. Targeting MYCN-driven transcription By BET-bromodomain inhibition. Clin Cancer Res. 2016;22:2470–81.

    Article  CAS  PubMed  Google Scholar 

  86. Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Disco. 2013;3:308–23.

    Article  CAS  Google Scholar 

  87. Zimmerman MW, Liu Y, He S, Durbin AD, Abraham BJ, Easton J, et al. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov. 2018;8:320–35.

    Article  CAS  PubMed  Google Scholar 

  88. Mayo MW, Baldwin AS. The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta. 2000;1470:M55–62.

    CAS  PubMed  Google Scholar 

  89. Maldonado MDM, Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer. Cancer Res. 2018;78:3101–11.

    Article  CAS  PubMed  Google Scholar 

  90. Li X, Jiang M, Chen D, Xu B, Wang R, Chu Y, et al. miR-148b-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J Exp Clin Cancer Res. 2018;37:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meteoglu I, Erdogdu IH, Meydan N, Erkus M, Barutca S. NF-KappaB expression correlates with apoptosis and angiogenesis in clear cell renal cell carcinoma tissues. J Exp Clin Cancer Res. 2008;27:53.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhou X, Lu H, Li F, Hao X, Han L, Dong Q, et al. MicroRNA-429 inhibits neuroblastoma cell proliferation, migration and invasion via the NF-κB pathway. Cell Mol Biol Lett. 2020;25:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shi C, Ren L, Sun C, Yu L, Bian X, Zhou X, et al. miR-29a/b/c function as invasion suppressors for gliomas by targeting CDC42 and predict the prognosis of patients. Br J Cancer. 2017;117:1036–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li SH, Li JP, Chen L, Liu JL. miR-146a induces apoptosis in neuroblastoma cells by targeting BCL11A. Med Hypotheses. 2018;117:21–27.

    Article  CAS  PubMed  Google Scholar 

  95. Yang JY, Li Y, Wang Q, Zhou WJ, Yan YN, Wei WB. MicroRNA-145 suppresses uveal melanoma angiogenesis and growth by targeting neuroblastoma RAS viral oncogene homolog and vascular endothelial growth factor. Chin Med J (Engl). 2020;133:1922–9.

    Article  CAS  PubMed  Google Scholar 

  96. Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res. 2013;319:1575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee HS, Lee K, Jang HJ, Lee GK, Park JL, Kim SY, et al. Epigenetic silencing of the non-coding RNA nc886 provokes oncogenes during human esophageal tumorigenesis. Oncotarget. 2014;5:3472–81.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wu Y, Liu H, Shi X, Yao Y, Yang W, Song Y. The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget. 2015;6:9160–72.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mazar J, Zhao W, Khalil AM, Lee B, Shelley J, Govindarajan SS, et al. The functional characterization of long noncoding RNA SPRY4-IT1 in human melanoma cells. Oncotarget. 2014;5:8959–69.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Guo H, Zhang X, Dong R, Liu X, Li Y, Lu S, et al. Integrated analysis of long noncoding RNAs and mRNAs reveals their potential roles in the pathogenesis of uterine leiomyomas. Oncotarget. 2014;5:8625–36.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xue Y, Ma G, Zhang Z, Hua Q, Chu H, Tong N, et al. A novel antisense long noncoding RNA regulates the expression of MDC1 in bladder cancer. Oncotarget. 2015;6:484–93.

    Article  PubMed  Google Scholar 

  103. Pandey GK, Kanduri C. Fighting neuroblastomas with NBAT1. Oncoscience. 2015;2:79–80.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27:370–81.

    Article  CAS  PubMed  Google Scholar 

  105. Lee KS, Park JL, Lee K, Richardson LE, Johnson BH, Lee HS, et al. nc886, a non-coding RNA of anti-proliferative role, is suppressed by CpG DNA methylation in human gastric cancer. Oncotarget. 2014;5:3944–55.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318–29.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Buechner J, Einvik C. N-myc and noncoding RNAs in neuroblastoma. Mol cancer Res. 2012;10:1243–53.

    Article  CAS  PubMed  Google Scholar 

  108. Whitehead J, Pandey GK, Kanduri C. Regulation of the mammalian epigenome by long noncoding RNAs. Biochim Biophys Acta. 2009;1790:936–47.

    Article  CAS  PubMed  Google Scholar 

  109. Castelnuovo M, Massone S, Tasso R, Fiorino G, Gatti M, Robello M, et al. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J. 2010;24:4033–46.

    Article  CAS  PubMed  Google Scholar 

  110. Liu PY, Erriquez D, Marshall GM, Tee AE, Polly P, Wong M, et al. Effects of a novel long noncoding RNA, lncUSMycN, on N-Myc expression and neuroblastoma progression. J Natl Cancer Inst. 2014;106:dju113.

    Article  PubMed  Google Scholar 

  111. Wei W, Liu Y, Lu Y, Yang B, Tang L. LncRNA XIST Promotes Pancreatic Cancer Proliferation Through miR-133a/EGFR. J Cell Biochem. 2017;118:3349–58.

    Article  CAS  PubMed  Google Scholar 

  112. Chen DL, Chen LZ, Lu YX, Zhang DS, Zeng ZL, Pan ZZ, et al. Long noncoding RNA XIST expedites metastasis and modulates epithelial-mesenchymal transition in colorectal cancer. Cell Death Dis. 2017;8:e3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li Z, Xu Z, Xie Q, Gao W, Xie J, Zhou L. miR-1303 promotes the proliferation of neuroblastoma cell SH-SY5Y by targeting GSK3β and SFRP1. Biomed Pharmacother. 2016;83:508–13.

    Article  CAS  PubMed  Google Scholar 

  114. Zhu H, Zheng T, Yu J, Zhou L, Wang L. LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a. Biomed Pharmacother. 2018;105:789–97.

    Article  CAS  PubMed  Google Scholar 

  115. Zheng R, Lin S, Guan L, Yuan H, Liu K, Liu C, et al. Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. Biochem Biophys Res Commun. 2018;498:1002–8.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang J, Li WY, Yang Y, Yan LZ, Zhang SY, He J, et al. LncRNA XIST facilitates cell growth, migration and invasion via modulating H3 histone methylation of DKK1 in neuroblastoma. Cell Cycle. 2019;18:1882–92.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rathjen FG, Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 1984;3:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Na’ara S, Amit M, Gil Z. L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression. Oncogene. 2019;38:596–608.

    Article  PubMed  Google Scholar 

  119. Corrado G, Laquintana V, Loria R, Carosi M, de Salvo L, Sperduti I, et al. Endometrial cancer prognosis correlates with the expression of L1CAM and miR34a biomarkers. J Exp Clin Cancer Res. 2018;37:139.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wachowiak R, Krause M, Mayer S, Peukert N, Suttkus A, Müller WC, et al. Increased L1CAM (CD171) levels are associated with glioblastoma and metastatic brain tumors. Medicine (Baltim). 2018;97:e12396.

    Article  CAS  Google Scholar 

  121. Yang H, Zhang X, Zhao Y, Sun G, Zhang J, Gao Y, et al. Downregulation of lncRNA XIST represses tumor growth and boosts radiosensitivity of neuroblastoma via modulation of the miR-375/L1CAM Axis. Neurochem Res. 2020;45:2679–90.

    Article  CAS  PubMed  Google Scholar 

  122. Linger RM, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008;100:35–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brandão L, Migdall-Wilson J, Eisenman K, Graham DK. TAM receptors in leukemia: expression, signaling, and therapeutic implications. Crit Rev Oncog. 2011;16:47–63.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995;80:661–70.

    Article  CAS  PubMed  Google Scholar 

  125. Neubauer A, Fiebeler A, Graham DK, O’Bryan JP, Schmidt CA, Barckow P, et al. Expression of axl, a transforming receptor tyrosine kinase, in normal and malignant hematopoiesis. Blood. 1994;84:1931–41.

    Article  CAS  PubMed  Google Scholar 

  126. Linger RM, Keating AK, Earp HS, Graham DK. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin Ther Targets. 2010;14:1073–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li Y, Wang X, Bi S, Zhao K, Yu C. Inhibition of Mer and Axl receptor tyrosine kinases leads to increased apoptosis and improved chemosensitivity in human neuroblastoma. Biochem Biophys Res Commun. 2015;457:461–6.

    Article  CAS  PubMed  Google Scholar 

  128. Bi S, Wang C, Li Y, Zhang W, Zhang J, Lv Z, et al. LncRNA-MALAT1-mediated Axl promotes cell invasion and migration in human neuroblastoma. Tumour Biol. 2017;39:1010428317699796.

    Article  PubMed  Google Scholar 

  129. Hu P, Chu J, Wu Y, Sun L, Lv X, Zhu Y, et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget. 2015;6:32410–25.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Koppen A, Ait-Aissa R, Hopman S, Koster J, Haneveld F, Versteeg R, et al. Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell proliferation. Cancer Lett. 2007;256:218–28.

    Article  CAS  PubMed  Google Scholar 

  131. Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, et al. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett. 2015;9:2507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang KP, Bai Y, Wang J, Zhang JZ. Morphine protects SH-SY5Y human neuroblastoma cells against Dickkopf1-induced apoptosis. Mol Med Rep. 2015;11:1174–80.

    Article  CAS  PubMed  Google Scholar 

  133. Rawson JB, Sun Z, Dicks E, Daftary D, Parfrey PS, Green RC, et al. Vitamin D intake is negatively associated with promoter methylation of the Wnt antagonist gene DKK1 in a large group of colorectal cancer patients. Nutr Cancer. 2012;64:919–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liang L, He H, Lv R, Zhang M, Huang H, An Z, et al. Preliminary mechanism on the methylation modification of Dkk-1 and Dkk-3 in hepatocellular carcinoma. Tumour Biol. 2015;36:1245–50.

    Article  CAS  PubMed  Google Scholar 

  135. Hattori N, Ushijima T. Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem Biophys Res Commun. 2014;455:3–9.

    Article  CAS  PubMed  Google Scholar 

  136. Han LiC, Chen Y. Targeting EZH2 for cancer therapy: progress and perspective. Curr Protein Pept Sci. 2015;16:559–70.

    Article  Google Scholar 

  137. Wang C, Liu Z, Woo CW, Li Z, Wang L, Wei JS, et al. EZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res. 2012;72:315–24.

    Article  CAS  PubMed  Google Scholar 

  138. Yun CW, Lee SH. The Roles of Autophagy in Cancer. Int J Mol Sci. 2018;19:3466.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Pickard MR, Mourtada-Maarabouni M, Williams GT. Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta. 2013;1832:1613–23.

    Article  CAS  PubMed  Google Scholar 

  140. Mazar J, Rosado A, Shelley J, Marchica J, Westmoreland TJ. The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma. Oncotarget. 2017;8:6589–607.

    Article  PubMed  Google Scholar 

  141. Smith CM, Steitz JA. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5’-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18:6897–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Renganathan A, Kresoja-Rakic J, Echeverry N, Ziltener G, Vrugt B, Opitz I, et al. GAS5 long non-coding RNA in malignant pleural mesothelioma. Mol Cancer. 2014;13:119.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Pickard MR, Williams GT. Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat. 2014;145:359–70.

    Article  CAS  PubMed  Google Scholar 

  144. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28:195–208.

    Article  CAS  PubMed  Google Scholar 

  145. Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19:172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yang T, Zhang Z, Zhang J, Tan T, Yang J, Pan J, et al. The rs2147578 C > G polymorphism in the Inc-LAMC2-1:1 gene is associated with increased neuroblastoma risk in the Henan children. BMC Cancer. 2018;18:948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen Y, Lian YJ, Ma YQ, Wu CJ, Zheng YK, Xie NC. LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology. 2018;68:212–21.

    Article  CAS  PubMed  Google Scholar 

  148. Tang M, Kui L, Lu G, Chen W. Disease-associated circular RNAs: from biology to computational identification. BioMed Res Int. 2020;2020:6798590.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Pan W, Wu A, Yu H, Yu Q, Zheng B, Yang W, et al. NEAT1 negatively regulates cell proliferation and migration of neuroblastoma cells by miR-183-5p/FOXP1 via the ERK/AKT pathway. Cell Transpl. 2020;29:963689720943608.

    Article  Google Scholar 

  150. Xu F, Wang H, Tian J, Xu H. Down-regulation of ID2-AS1 alleviates the neuronal injury induced by 1-methy1-4-phenylpyridinium in human neuroblastoma cell line SH-SY5Y cells through regulating miR-199a-5p/IFNAR1/JAK2/STAT1 Axis. Neurochem Res. 2021;46:2192–203.

    Article  CAS  PubMed  Google Scholar 

  151. Ge Y, Tan S, Bi J, Rao M, Yu Y, Tian L. SNHG16 knockdown inhibits tumorigenicity of neuroblastoma in children via miR-15b-5p/PRPS1 axis. Neuroreport. 2020;31:1225–35.

    Article  CAS  PubMed  Google Scholar 

  152. Fontemaggi G, Turco C, Esposito G, Di Agostino S. New molecular mechanisms and clinical impact of circRNAs in human cancer. Cancers. 2021;13:3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chi R, Chen X, Liu M, Zhang H, Li F, Fan X, et al. Role of SNHG7-miR-653-5p-STAT2 feedback loop in regulating neuroblastoma progression. J Cell Physiol. 2019;234:13403–12.

    Article  CAS  PubMed  Google Scholar 

  154. Bao J, Zhang S, Meng Q, Qin T. SNHG16 silencing inhibits neuroblastoma progression by downregulating HOXA7 via sponging miR-128-3p. Neurochem Res. 2020;45:825–36.

    Article  CAS  PubMed  Google Scholar 

  155. Xu Z, Sun Y, Wang D, Sun H, Liu X. SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells. Cancer Cell Int. 2020;20:236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Avery JT, Zhang R, Boohaker RJ. GLI1: a therapeutic target for cancer. Front Oncol. 2021;11:673154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cao D, Yu T, Ou X. MiR-873-5P controls gastric cancer progression by targeting hedgehog-GLI signaling. Pharmazie. 2016;71:603–6.

    CAS  PubMed  Google Scholar 

  158. Huang XY, Huang ZL, Xu YH, Zheng Q, Chen Z, Song W, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep. 2017;7:5428.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Schiapparelli P, Shahi MH, Enguita-Germán M, Johnsen JI, Kogner P, Lázcoz P, et al. Inhibition of the sonic hedgehog pathway by cyplopamine reduces the CD133+/CD15+ cell compartment and the in vitro tumorigenic capability of neuroblastoma cells. Cancer Lett. 2011;310:222–31.

    Article  CAS  PubMed  Google Scholar 

  160. Xu L, Wang X, Wan J, Li T, Gong X, Zhang K, et al. Sonic Hedgehog pathway is essential for neuroblastoma cell proliferation and tumor growth. Mol Cell Biochem. 2012;364:235–41.

    Article  CAS  PubMed  Google Scholar 

  161. Wickström M, Dyberg C, Shimokawa T, Milosevic J, Baryawno N, Fuskevåg OM, et al. Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int J Cancer. 2013;132:1516–24.

    Article  PubMed  Google Scholar 

  162. Diao Y, Rahman MF, Vyatkin Y, Azatyan A, St Laurent G, Kapranov P, et al. Identification of novel GLI1 target genes and regulatory circuits in human cancer cells. Mol Oncol. 2018;12:1718–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Xu L, Kwon YJ, Frolova N, Steg AD, Yuan K, Johnson MR, et al. Gli1 promotes cell survival and is predictive of a poor outcome in ERalpha-negative breast cancer. Breast Cancer Res Treat. 2010;123:59–71.

    Article  CAS  PubMed  Google Scholar 

  164. Cheng J, Deng R, Wu C, Zhang P, Wu K, Shi L, et al. Inhibition of SALL4 suppresses carcinogenesis of colorectal cancer via regulating Gli1 expression. Int J Clin Exp Pathol. 2015;8:10092–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen G, Goto Y, Sakamoto R, Tanaka K, Matsubara E, Nakamura M, et al. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor. Biochem Biophys Res Commun. 2011;404:809–15.

    Article  CAS  PubMed  Google Scholar 

  166. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17:165–72.

    Article  CAS  PubMed  Google Scholar 

  167. Gan H, Liu H, Zhang H, Li Y, Xu X, Xu X, et al. SHh-Gli1 signaling pathway promotes cell survival by mediating baculoviral IAP repeat-containing 3 (BIRC3) gene in pancreatic cancer cells. Tumour Biol. 2016;37:9943–50.

    Article  CAS  PubMed  Google Scholar 

  168. Sun L, Yao Y, Pan G, Zhan S, Shi W, Lu T, et al. Small interfering RNA-mediated knockdown of fatty acid synthase attenuates the proliferation and metastasis of human gastric cancer cells via the mTOR/Gli1 signaling pathway. Oncol Lett. 2018;16:594–602.

    PubMed  PubMed Central  Google Scholar 

  169. Wen Y, Gong X, Dong Y, Tang C. Long Non Coding RNA SNHG16 Facilitates Proliferation, Migration, Invasion and Autophagy of Neuroblastoma Cells via Sponging miR-542-3p and Upregulating ATG5 Expression. OncoTargets Ther. 2020;13:263–75.

    Article  CAS  Google Scholar 

  170. Nayak A, Satapathy SR, Das D, Siddharth S, Tripathi N, Bharatam PV, et al. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1. Sci Rep. 2016;6:20600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang J, Yu L, Yan J, Xiao Y, Li W, Xiao J, et al. Circular RNA DGKB Promotes the Progression of Neuroblastoma by Targeting miR-873/GLI1 Axis. Front Oncol. 2020;10:1104.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang J, Zuo J, Wang M, Ma X, Gao K, Bai X, et al. Polo‑like kinase 4 promotes tumorigenesis and induces resistance to radiotherapy in glioblastoma. Oncol Rep. 2019;41:2159–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Liao Z, Zhang H, Fan P, Huang Q, Dong K, Qi Y, et al. High PLK4 expression promotes tumor progression and induces epithelial‑mesenchymal transition by regulating the Wnt/β‑catenin signaling pathway in colorectal cancer. Int J Oncol. 2019;54:479–90.

    Article  CAS  PubMed  Google Scholar 

  174. Marina M, Saavedra HI. Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci (Landmark Ed). 2014;19:352–65.

    Article  PubMed  Google Scholar 

  175. Zhang N, Liu FL, Ma TS, Zhang ZZJ. LncRNA SNHG1 contributes to tumorigenesis and mechanism by targeting miR-338-3p to regulate PLK4 in human neuroblastoma. Eur Rev Med Pharm Sci. 2019;23:8971–83.

    CAS  Google Scholar 

  176. Tian X, Zhou D, Chen L, Tian Y, Zhong B, Cao Y, et al. Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis. 2018;9:54.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Fang Y, Yao Y, Mao K, Zhong Y, Xu Y. Circ_0132817 facilitates cell proliferation, migration, invasion and glycolysis by regulating the miR-432-5p/NOL4L axis in neuroblastoma. Exp Brain Res. 2021;239:1841–52.

    Article  CAS  PubMed  Google Scholar 

  178. Chen Y, Lin L, Hu X, Li Q, Wu M. Silencing of circular RNA circPDE5A suppresses neuroblastoma progression by targeting the miR-362-5p/NOL4L axis. Int J Neurosci. 2021;133:141–51.

  179. Yang Y, Pan H, Chen J, Zhang Z, Liang M, Feng X. CircKIF2A contributes to cell proliferation, migration, invasion and glycolysis in human neuroblastoma by regulating miR-129-5p/PLK4 axis. Mol Cell Biochem. 2021;476:2513–25.

    Article  CAS  PubMed  Google Scholar 

  180. Liu H, Xue L, Song C, Liu F, Jiang T, Yang X. Overexpression of circular RNA circ_001569 indicates poor prognosis in hepatocellular carcinoma and promotes cell growth and metastasis by sponging miR-411-5p and miR-432-5p. Biochem Biophys Res Commun. 2018;503:2659–65.

    Article  CAS  PubMed  Google Scholar 

  181. Li JB, Liu F, Zhang BP, Bai WK, Cheng W, Zhang YH, et al. LncRNA625 modulates prostate cancer cells proliferation and apoptosis through regulating the Wnt/β-catenin pathway by targeting miR-432. Eur Rev Med Pharm Sci. 2017;21:2586–95.

    Google Scholar 

  182. Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, et al. Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med. 2019;11:e10835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mahmoudi E, Kiltschewskij D, Fitzsimmons C, Cairns MJ. Depolarization-associated circRNA regulate neural gene expression and in some cases may function as templates for translation. Cells. 2019;9:25.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Yang F, Hu A, Guo Y, Wang J, Li D, Wang X, et al. p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitating ZRF1/BRD4 transactivation. Mol Cancer. 2021;20:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, et al. Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 2019;18:90.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12:1659–68.

    Article  CAS  PubMed  Google Scholar 

  187. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  188. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70:1668–78.

    Article  CAS  PubMed  Google Scholar 

  190. Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012;31:3513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013;32:2747–55.

    Article  CAS  PubMed  Google Scholar 

  192. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56.

    Article  CAS  PubMed  Google Scholar 

  194. Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011;54:1237–48.

    Article  CAS  PubMed  Google Scholar 

  195. Kosaka N, Iguchi H, Yoshioka Y, Hagiwara K, Takeshita F, Ochiya T. Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem. 2012;287:1397–405.

    Article  CAS  PubMed  Google Scholar 

  196. Marimpietri D, Airoldi I, Faini AC, Malavasi F, Morandi F. The role of extracellular vesicles in the progression of human neuroblastoma. Int J Mol Sci. 2021;22:3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20:385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Xu P, Xu H, Cheng HS, Chan HH, Wang RYL. MicroRNA 876-5p modulates EV-A71 replication through downregulation of host antiviral factors. Virol J. 2020;17:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kosaka N, Yoshioka Y, Fujita Y, Ochiya T. Versatile roles of extracellular vesicles in cancer. J Clin Invest. 2016;126:1163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Marleau AM, Chen CS, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. J Transl Med. 2012;10:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Raimondo S, Pucci M, Alessandro R, Fontana S. Extracellular vesicles and tumor-immune escape: biological functions and clinical perspectives. Int J Mol Sci. 2020;21:2286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Disco. 2013;12:347–57.

    Article  CAS  Google Scholar 

  203. Kanamori Y, Finotti A. Enzymatic spermine metabolites induce apoptosis associated with increase of p53, caspase-3 and miR-34a in both neuroblastoma cells, SJNKP and the N-Myc-amplified form IMR5. Cells. 2021;10:1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Peng Z, Yang X, Zhang H, Yin M, Luo Y, Xie C. MiR-29b-3p aggravates NG108-15 cell apoptosis triggered by fluorine combined with aluminum. Ecotoxicol Environ Saf. 2021;224:112658.

    Article  CAS  PubMed  Google Scholar 

  205. Yang L, He K, Yao S, Zhang Y, Shen J. Sevoflurane inhibits neuroblastoma cell proliferation and invasion and induces apoptosis by miR-144-3p/YAP1 axis. Basic Clin Pharmacol Toxicol. 2021;129: 297–307.

  206. Subramanian M, Hyeon SJ, Das T, Suh YS, Kim YK. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun. 2021;12:3291.

  207. Yuan H, Liu F, Ma T, Zeng Z, Zhang N. miR-338-3p inhibits cell growth, invasion, and EMT process in neuroblastoma through targeting MMP-2. Open Life Sci. 2021;16:198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li S, Wang Y, Wang M, Chen L, Chen S, Deng F. et al. microRNA-186 alleviates oxygen-glucose deprivation/reoxygenation-induced injury by directly targeting hypoxia-inducible factor-1α. J Biochem Mol Toxicol. 2021;35:1–11.

  209. Zhu X, Wu T, Chi Y, Ge Y, Jiao Y, Zhu F, et al. MicroRNA-195 suppresses enterovirus A71-induced pyroptosis in human neuroblastoma cells through targeting NLRX1. Virus Res. 2021;292:198245.

    Article  CAS  PubMed  Google Scholar 

  210. Su H, Xiaohui X, He X, Liu C, Wang G, Zhou C. The miR-455-5p/ERα36 axis regulates mammalian neuronal viability and axonal regeneration. Neurosci Lett. 2020;735:135159.

    Article  CAS  PubMed  Google Scholar 

  211. Cheng J, Xu L, Deng L, Xue L, Meng Q, Wei F, et al. RNA N(6)-methyladenosine modification is required for miR-98/MYCN axis-mediated inhibition of neuroblastoma progression. Sci Rep. 2020;10:13624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Liu Z, Zhang H, Sun L, Zhu K, Lang W. miR-29c-3p increases cell viability and suppresses apoptosis by regulating the TNFAIP1/NF-κB signaling pathway via TNFAIP1 in Aβ-treated neuroblastoma cells. Neurochem Res. 2020;45:2375–84.

    Article  CAS  PubMed  Google Scholar 

  213. Ma XL, Zhang XJ, Du Q, Zhang XN, Zhang SY, Zhao HF. microRNA-146b promotes neuroblastoma cell growth through targeting NUMB. Exp Therapeutic Med. 2020;19:3531–6.

    CAS  Google Scholar 

  214. Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered. 2020; 11:219–28.

  215. Wang J, Zhang X, Yao H, Le Y, Zhou W, Li J, et al. MiR-490-5p functions as tumor suppressor in childhood neuroblastoma by targeting MYEOV. Hum Cell. 2020;33:261–71.

    Article  PubMed  Google Scholar 

  216. Mao F, Zhang J, Cheng X, Xu Q. miR-149 inhibits cell proliferation and enhances chemosensitivity by targeting CDC42 and BCL2 in neuroblastoma. Cancer Cell Int. 2019;19:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Li J, Ma L. MiR-142-3p attenuates oxygen glucose deprivation/reoxygenation-induced injury by targeting FBXO3 in human neuroblastoma SH-SY5Y Cells. World Neurosurg. 2020;136:e149–e157.

    Article  PubMed  Google Scholar 

  218. Yang J, Shao X, Wang L, Xu H, Sun Y, Jiang J, et al. Angelica polysaccharide exhibits antitumor effect in neuroblastoma cell line SH-SY5Y by up-regulation of miR-205. Biofactors. 2019;49:201.

  219. Wu Q, Shang Y, Shen T, Liu F, Xu Y, Wang H. Neuroprotection of miR-214 against isoflurane-induced neurotoxicity involves the PTEN/PI3K/Akt pathway in human neuroblastoma cell line SH-SY5Y. Arch Biochem Biophys. 2019;678:108181.

    Article  CAS  PubMed  Google Scholar 

  220. Ye W, Liang F, Ying C, Zhang M, Feng D, Jiang X. Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1. Exp. Therapeutic Med. 2019;18:3729–36.

    CAS  Google Scholar 

  221. Chava S, Reynolds CP, Pathania AS, Gorantla S, Poluektova LY, Coulter DW, et al. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol. 2020; 14:180–96.

  222. Kosti A, Du L, Shivram H, Qiao M, Burns S, Garcia JG, et al. ELF4 Is a Target of miR-124 and promotes neuroblastoma proliferation and undifferentiated state. Mol Cancer Res. 2020;18:68–78.

  223. Yuan XL, Wen FQ, Chen XW, Jiang XP, Liu SX. miR-373 promotes neuroblastoma cell proliferation, migration, and invasion by targeting SRCIN1. OncoTargets Ther. 2019;12:4927–36.

    Article  CAS  Google Scholar 

  224. Liu G, Xu Z, Hao D. MicroRNA‑451 inhibits neuroblastoma proliferation, invasion and migration by targeting macrophage migration inhibitory factor. Mol Med Rep. 2016;13:2253–60.

    Article  PubMed  Google Scholar 

  225. Yu Y, Zhang J, Jin Y, Yang Y, Shi J, Chen F, et al. MiR-20a-5p suppresses tumor proliferation by targeting autophagy-related gene 7 in neuroblastoma. Cancer Cell Int. 2018;18:5.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Zhao Z, Partridge V, Sousares M, Shelton SD, Holland CL, Pertsemlidis A, et al. microRNA-2110 functions as an onco-suppressor in neuroblastoma by directly targeting Tsukushi. PLoS ONE. 2018;13:e0208777.

  227. Wang Z, Yao W, Li K, Zheng N, Zheng C, Zhao X, et al. Reduction of miR-21 induces SK-N-SH cell apoptosis and inhibits proliferation via PTEN/PDCD4. Oncol Lett. 2017;13:4727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Wang Z, Lei H, Sun Q. MicroRNA-141 and its associated gene FUS modulate proliferation, migration and cisplatin chemosensitivity in neuroblastoma cell lines. Oncol Rep. 2016;35:2943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Althoff K, Beckers A, Odersky A, Mestdagh P, Köster J, Bray IM, et al. MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A. Int J Cancer. 2013;133:1064–73.

    Article  CAS  PubMed  Google Scholar 

  230. Gao SL, Wang LZ, Liu HY, Liu DL, Xie LM, Zhang ZW. miR-200a inhibits tumor proliferation by targeting AP-2γ in neuroblastoma cells. Asian Pac J Cancer Prev. 2014;15:4671–6.

    Article  PubMed  Google Scholar 

  231. Zhu K, Su Y, Xu B, Wang Z, Sun H, Wang L, et al. MicroRNA-186-5p represses neuroblastoma cell growth via downregulation of Eg5. Am J Transl Res. 2019;11:2245–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Chen S, Jin L, Nie S, Han L, Lu N, Zhou Y. miR-205 inhibits neuroblastoma growth by targeting cAMP-responsive element-binding protein 1. Oncol Res. 2018;26:445–55.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Harvey H, Piskareva O, Creevey L, Alcock LC, Buckley PG, O’Sullivan MJ, et al. Modulation of chemotherapeutic drug resistance in neuroblastoma SK-N-AS cells by the neural apoptosis inhibitory protein and miR-520f. Int J Cancer. 2015;136:1579–88.

    Article  CAS  PubMed  Google Scholar 

  234. Cao XY, Sun ZY, Zhang LJ, Chen MK, Yuan B. microRNA-144-3p suppresses human neuroblastoma cell proliferation by targeting HOXA7. Eur Rev Med Pharm Sci. 2019;23:716–23.

    Google Scholar 

  235. Soriano A, París-Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271–87.

    Article  PubMed  PubMed Central  Google Scholar 

  236. De Brouwer S, Mestdagh P, Lambertz I, Pattyn F, De Paepe A, Westermann F, et al. Dickkopf-3 is regulated by the MYCN-induced miR-17-92 cluster in neuroblastoma. Int J Cancer. 2012;130:2591–8.

    Article  PubMed  Google Scholar 

  237. Qu H, Zheng L, Song H, Jiao W, Li D, Fang E, et al. microRNA-558 facilitates the expression of hypoxia-inducible factor 2 alpha through binding to 5’-untranslated region in neuroblastoma. Oncotarget. 2016;7:40657–73.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Regis S, Caliendo F, Dondero A, Casu B, Romano F, Loiacono F, et al. TGF-β1 downregulates the expression of CX(3)CR1 by inducing miR-27a-5p in primary human NK cells. Front Immunol. 2017;8:868.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Althoff K, Beckers A, Bell E, Nortmeyer M, Thor T, Sprüssel A, et al. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene. 2015;34:3357–68.

    Article  CAS  PubMed  Google Scholar 

  240. Xin C, Buhe B, Hongting L, Chuanmin Y, Xiwei H, Hong Z, et al. MicroRNA-15a promotes neuroblastoma migration by targeting reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and regulating matrix metalloproteinase-9 expression. FEBS J. 2013;280:855–66.

    CAS  PubMed  Google Scholar 

  241. Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM, et al. MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res. 2010;70:7874–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhao H, Zhang C, Hou G, Song J. MicroRNA-H4-5p encoded by HSV-1 latency-associated transcript promotes cell proliferation, invasion and cell cycle progression via p16-mediated PI3K-Akt signaling pathway in SHSY5Y cells. Int J Clin Exp Med. 2015;8:7526–34.

    PubMed  PubMed Central  Google Scholar 

  243. Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res. 2008;6:735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ren X, Bai X, Zhang X, Li Z, Tang L, Zhao X, et al. Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol Cell Proteom. 2015;14:316–28.

    Article  CAS  Google Scholar 

  245. Lodrini M, Poschmann G, Schmidt V, Wünschel J, Dreidax D, Witt O, et al. Minichromosome maintenance complex is a critical node in the miR-183 signaling network of MYCN-amplified neuroblastoma cells. J Proteome Res. 2016;15:2178–86.

    Article  CAS  PubMed  Google Scholar 

  246. Zhang H, Qi M, Li S, Qi T, Mei H, Huang K, et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Therapeutics. 2012;11:1454–66.

    Article  Google Scholar 

  247. Wu K, Yang L, Chen J, Zhao H, Wang J, Xu S, et al. miR-362-5p inhibits proliferation and migration of neuroblastoma cells by targeting phosphatidylinositol 3-kinase-C2β. FEBS Lett. 2015;589:1911–9.

    Article  CAS  PubMed  Google Scholar 

  248. Fabbri E, Montagner G, Bianchi N, Finotti A, Borgatti M, Lampronti I, et al. MicroRNA miR-93-5p regulates expression of IL-8 and VEGF in neuroblastoma SK-N-AS cells. Oncol Rep. 2016;35:2866–72.

    Article  CAS  PubMed  Google Scholar 

  249. Lodrini M, Oehme I, Schroeder C, Milde T, Schier MC, Kopp-Schneider A, et al. MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma. Nucleic Acids Res. 2013;41:6018–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Soriano A, Masanas M, Boloix A, Masiá N, París-Coderch L, Piskareva O, et al. Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci. 2019;76:2231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Di Paolo D, Pastorino F, Brignole C, Corrias MV, Emionite L, Cilli M, et al. Combined replenishment of miR-34a and let-7b by targeted nanoparticles inhibits tumor growth in neuroblastoma preclinical models. Small. 2020;16:e1906426.

  252. Cheng M, Liu L, Lao Y, Liao W, Liao M, Luo X, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016;7:42274.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Yang J, Shao X, Jiang J, Sun Y, Wang L, Sun L. Angelica sinensis polysaccharide inhibits proliferation, migration, and invasion by downregulating microRNA‐675 in human neuroblastoma cell line SH‐SY5Y. Cell Biol Int. 2018;42:867–76.

    Article  CAS  PubMed  Google Scholar 

  254. Patil KS, Basak I, Pal R, Ho HP, Alves G, Chang EJ, et al. A proteomics approach to investigate miR-153-3p and miR-205-5p targets in neuroblastoma cells. PLoS ONE. 2015;10:e0143969.

    Article  PubMed  PubMed Central  Google Scholar 

  255. He X-Y, Tan Z-L, Mou Q, Liu F-J, Liu S, Yu C-W, et al. MicroRNA-221 enhances MYCN via targeting nemo-like kinase and functions as an oncogene related to poor prognosis in neuroblastoma. Clin Cancer Res. 2017;23:2905–18.

    Article  CAS  PubMed  Google Scholar 

  256. Tivnan A, Tracey L, Buckley PG, Alcock LC, Davidoff AM, Stallings RL. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer. 2011;11:1–11.

    Article  Google Scholar 

  257. Zhao D, Tian Y, Li P, Wang L, Xiao A, Zhang M, et al. MicroRNA-203 inhibits the malignant progression of neuroblastoma by targeting Sam68. Mol Med Rep. 2015;12:5554–60.

    Article  CAS  PubMed  Google Scholar 

  258. Xia H-L, Lv Y, Xu C-W, Fu M-C, Zhang T, Yan X-M, et al. MiR-513c suppresses neuroblastoma cell migration, invasion, and proliferation through direct targeting glutaminase (GLS). Cancer Biomark. 2017;20:589–96.

    Article  CAS  PubMed  Google Scholar 

  259. Samaraweera L, Grandinetti KB, Huang R, Spengler BA, Ross RA. MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity. BMC Cancer. 2014;14:309.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Xu Y, Chen X, Lin L, Chen H, Yu S, Li D. MicroRNA-149 is associated with clinical outcome in human neuroblastoma and modulates cancer cell proliferation through Rap1 independent of MYCN amplification. Biochimie. 2017;139:1–8.

    Article  CAS  PubMed  Google Scholar 

  261. Creevey L, Ryan J, Harvey H, Bray IM, Meehan M, Khan AR, et al. MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1. Mol Cancer. 2013;12:1–12.

    Article  Google Scholar 

  262. Mundalil Vasu M, Anitha A, Takahashi T, Thanseem I, Iwata K, Asakawa T, et al. Fluoxetine increases the expression of miR-572 and miR-663a in human neuroblastoma cell lines. PLoS ONE. 2016;11:e0164425.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Chen Y, Tsai Y-H, Tseng S-H. Inhibition of cyclin-dependent kinase 1–induced cell death in neuroblastoma cells through the microRNA-34a–MYCN–survivin pathway. Surgery. 2013;153:4–16.

    Article  PubMed  Google Scholar 

  264. Li Z, Chen H. miR-34a inhibits proliferation, migration and invasion of paediatric neuroblastoma cells via targeting HNF4α. Artif Cells Nanomed Biotechnol. 2019;47:3072–8.

    Article  CAS  PubMed  Google Scholar 

  265. Yang H, Li Q, Zhao W, Yuan D, Zhao H, Zhou Y. miR-329 suppresses the growth and motility of neuroblastoma by targeting KDM1A. FEBS Lett. 2014;588:192–7.

    Article  CAS  PubMed  Google Scholar 

  266. Qiao J, Lee S, Paul P, Theiss L, Tiao J, Qiao L, et al. miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis. Surgery. 2013;154:226–33.

    Article  PubMed  Google Scholar 

  267. Chen X, Pan M, Han L, Lu H, Hao X, Dong Q. miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Lett. 2013;587:3729–37.

    Article  CAS  PubMed  Google Scholar 

  268. Wang X, Li J, Xu X, Zheng J, Li Q. miR-129 inhibits tumor growth and potentiates chemosensitivity of neuroblastoma by targeting MYO10. Biomed Pharmacother. 2018;103:1312–8.

    Article  CAS  PubMed  Google Scholar 

  269. Takwi AA, Wang Y-M, Wu J, Michaelis M, Cinatl J, Chen T. miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene. 2014;33:3717–29.

    Article  CAS  PubMed  Google Scholar 

  270. Evangelisti C, Florian MC, Massimi I, Dominici C, Giannini G, Galardi S, et al. MiR‐128 up‐regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J. 2009;23:4276–87.

    Article  CAS  PubMed  Google Scholar 

  271. Cai Z, Zheng F, Ding Y, Zhan Y, Gong R, Li J, et al. Nrf2-regulated miR-380-3p blocks the translation of Sp3 protein and its mediation of paraquat-induced toxicity in mouse neuroblastoma N2a cells. Toxicological Sci. 2019;171:515–29.

    Article  CAS  Google Scholar 

  272. Chen H, Shalom-Feuerstein R, Riley J, Zhang S-D, Tucci P, Agostini M, et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun. 2010;394:921–7.

    Article  CAS  PubMed  Google Scholar 

  273. Li Y, Li W, Zhang JG, Li HY, Li YM. Downregulation of tumor suppressor menin by miR-421 promotes proliferation and migration of neuroblastoma. Tumour Biol. 2014;35:10011–7.

    Article  CAS  PubMed  Google Scholar 

  274. Zhang H, Liu T, Yi S, Gu L, Zhou M. Targeting MYCN IRES in MYCN-amplified neuroblastoma with miR-375 inhibits tumor growth and sensitizes tumor cells to radiation. Mol Oncol. 2015;9:1301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Buechner J, Tømte E, Haug B, Henriksen J, Løkke C, Flaegstad T, et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer. 2011;105:296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Feinberg-Gorenshtein G, Guedj A, Shichrur K, Jeison M, Luria D, Kodman Y, et al. MiR-192 directly binds and regulates Dicer1 expression in neuroblastoma. PLoS ONE. 2013;8:e78713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Xu L-J, Jiang T, Zhao W, Han J-F, Liu J, Deng Y-Q, et al. Parallel mRNA and microRNA profiling of HEV71-infected human neuroblastoma cells reveal the up-regulation of miR-1246 in association with DLG3 repression. PLoS ONE. 2014;9:e95272.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Lee J-J, Drakaki A, Iliopoulos D, Struhl K. MiR-27b targets PPAR γ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene. 2012;31:3818–25.

    Article  CAS  PubMed  Google Scholar 

  279. Chakrabarti M, Ai W, Banik NL, Ray SK. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem Res. 2013;38:420–32.

    Article  CAS  PubMed  Google Scholar 

  280. Guidi M, Muiños-Gimeno M, Kagerbauer B, Martí E, Estivill X, Espinosa-Parrilla Y. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol Biol. 2010;11:1–17.

    Article  Google Scholar 

  281. Swarbrick A, Woods SL, Shaw A, Balakrishnan A, Phua Y, Nguyen A, et al. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med. 2010;16:1134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Huang T-C, Chang H-Y, Chen C-Y, Wu P-Y, Lee H, Liao Y-F, et al. Silencing of miR‐124 induces neuroblastoma SK‐N‐SH cell differentiation, cell cycle arrest and apoptosis through promoting AHR. FEBS Lett. 2011;585:3582–6.

    Article  CAS  PubMed  Google Scholar 

  283. Jia J, Zhang D, Zhang J, Yang L, Zhao G, Yang H, et al. Long non-coding RNA SNHG7 promotes neuroblastoma progression through sponging miR-323a-5p and miR-342-5p. Biomed Pharmacother. 2020;128:110293.

    Article  CAS  PubMed  Google Scholar 

  284. Nie L, Li C, Zhao T, Wang Y, Liu J. LncRNA double homeobox A pseudogene 8 (DUXAP8) facilitates the progression of neuroblastoma and activates Wnt/β-catenin pathway via microRNA-29/nucleolar protein 4 like (NOL4L) axis. Brain Res. 2020;1746:146947.

    Article  CAS  PubMed  Google Scholar 

  285. Yang B, Ye X, Wang J, Xia S. Long noncoding RNA nuclear-enriched abundant transcript 1 regulates proliferation and apoptosis of neuroblastoma cells treated by cisplatin by targeting miR-326 through Janus kinase/signal transducer and activator of transcription 3 pathway. Neuroreport. 2020;31:1189–98.

    Article  CAS  PubMed  Google Scholar 

  286. Liu L, Zhao H, He HH, Huang J, Xu YY, Li XL, et al. Long non-coding RNA NR2F1-AS1 promoted neuroblastoma progression through miR-493-5p/TRIM2 axis. Eur Rev Med Pharm Sci. 2020;24:12748–56.

    CAS  Google Scholar 

  287. Jia P, Wei E, Liu H, Wu T, Wang H. Silencing of long non-coding RNA DLX6-AS1 weakens neuroblastoma progression by the miR-513c-5p/PLK4 axis. IUBMB Life. 2020;72:2627–36.

  288. O’Brien EM, Selfe JL, Martins AS, Walters ZS, Shipley JM. The long non-coding RNA MYCNOS-01 regulates MYCN protein levels and affects growth of MYCN-amplified rhabdomyosarcoma and neuroblastoma cells. BMC Cancer. 2018;18:217.

  289. Wang H, Liao S, Li H, Chen Y, Yu J. Long non-coding RNA TUG1 sponges Mir-145a-5p to regulate microglial polarization after oxygen-glucose deprivation. Front Mol Neurosci. 2019;12:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Ding XM, Zhao LJ, Qiao HY, Wu SL, Wang XH. Long non-coding RNA-p21 regulates MPP(+)-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem Biol Interact. 2019;307:73–81.

    Article  CAS  PubMed  Google Scholar 

  291. Deng D, Yang S, Wang X. Long non-coding RNA SNHG16 regulates cell behaviors through miR-542-3p/HNF4α axis via RAS/RAF/MEK/ERK signaling pathway in pediatric neuroblastoma cells. Biosci Rep. 2020;40:BSR20200723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Li J, Zhuang C, Liu Y, Chen M, Chen Y, Chen Z, et al. Synthetic tetracycline-controllable shRNA targeting long non-coding RNA HOXD-AS1 inhibits the progression of bladder cancer. J Exp Clin Cancer Res. 2016;35:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE, et al. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J. 2014;33:296–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Yang H, Guo JF, Zhang ML, Li AM. LncRNA SNHG4 promotes neuroblastoma proliferation, migration, and invasion by sponging miR-377-3p. Neoplasma. 2020;67:1054–62.

    Article  CAS  PubMed  Google Scholar 

  295. Chen L, Feng P, Zhu X, He S, Duan J, Zhou D. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells. J Cell Mol Med. 2016;20:2102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, et al. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. eLife. 2014;3:e04530.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Pan J, Lin H, Yang T, Yang J. lncRNA-uc003opf.1 rs11752942 A>G polymorphism decreases neuroblastoma risk in Chinese children. Cell Cycle. 2020;19:2367–72.

  298. Yu Z, Zhang J, Han J. Silencing CASC11 curbs neonatal neuroblastoma progression through modulating microRNA-676-3p/nucleolar protein 4 like (NOL4L) axis. Pediatr Res. 2020;87:662–8.

    Article  CAS  PubMed  Google Scholar 

  299. Wang B, Xu L, Zhang J, Cheng X, Xu Q, Wang J, et al. LncRNA NORAD accelerates the progression and doxorubicin resistance of neuroblastoma through up-regulating HDAC8 via sponging miR-144-3p. Biomed Pharmacother. 2020;129:110268.

    Article  CAS  PubMed  Google Scholar 

  300. Yan Y, Chen L, Zhou J, Xie L. SNHG12 inhibits oxygen‑glucose deprivation‑induced neuronal apoptosis via the miR‑181a‑5p/NEGR1 axis. Mol Med Rep. 2020;22:3886–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Hu Y, Sun H, Hu J, Zhang X. LncRNA DLX6-AS1 promotes the progression of neuroblastoma by activating STAT2 via targeting miR-506-3p. Cancer Manag Res. 2020;12:7451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Zhou S, Zhang D, Guo J, Chen Z, Chen Y, Zhang J. Deficiency of NEAT1 prevented MPP(+)-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis. Brain Res. 2021;1750:147156.

    Article  CAS  PubMed  Google Scholar 

  303. Ding H, Luo Y, Hu K, Liu P, Xiong M. Linc00467 promotes lung adenocarcinoma proliferation via sponging miR-20b-5p to activate CCND1 expression. OncoTargets Ther. 2019;12:6733–43.

    Article  CAS  Google Scholar 

  304. Tang W, Dong K, Li K, Dong R, Zheng S. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways. Sci Rep. 2016;6:36268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Zhou X, Lu H, Li F, Han L, Zhang H, Jiang Z, et al. LncRNA cancer susceptibility candidate (CASC7) upregulates phosphatase and tensin homolog by downregulating miR-10a to inhibit neuroblastoma cell proliferation. Neuroreport. 2020;31:381–6.

    Article  CAS  PubMed  Google Scholar 

  306. Pan J, Zhang D, Zhang J, Qin P, Wang J. LncRNA RMRP silence curbs neonatal neuroblastoma progression by regulating microRNA-206/tachykinin-1 receptor axis via inactivating extracellular signal-regulated kinases. Cancer Biol Ther. 2019;20:653–65.

    Article  CAS  PubMed  Google Scholar 

  307. Xie SP, Zhou F, Li J, Duan SJ. NEAT1 regulates MPP(+)-induced neuronal injury by targeting miR-124 in neuroblastoma cells. Neurosci Lett. 2019;708:134340.

    Article  CAS  PubMed  Google Scholar 

  308. Nan A, Chen L, Zhang N, Liu Z, Yang T, Wang Z, et al. A novel regulatory network among LncRpa, CircRar1, MiR-671 and apoptotic genes promotes lead-induced neuronal cell apoptosis. Arch Toxicol. 2017;91:1671–84.

    Article  CAS  PubMed  Google Scholar 

  309. Mi J, Han Y, Zhang J, Hao X, Xing M, Shang C. Long noncoding RNA LINC01410 promotes the tumorigenesis of neuroblastoma cells by sponging microRNA-506-3p and modulating WEE1. Cancer Med. 2020;9:8133–43.

  310. Gu F, Ji D, Ni H, Chen D. SRY-box 21 antisense RNA 1 knockdown diminishes amyloid beta(25-35)-induced neuronal damage by miR-132/PI3K/AKT pathway. Neurochem Res. 2021;46:2376–86.

    Article  CAS  PubMed  Google Scholar 

  311. Chen Y, Yang F, Fang E, Xiao W, Mei H, Li H, et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 2019;26:1346–64.

    Article  CAS  PubMed  Google Scholar 

  312. Zhang X, Zhang J, Liu Q, Zhao Y, Zhang W, Yang H. Circ-CUX1 accelerates the progression of neuroblastoma via miR-16-5p/DMRT2 axis. Neurochem Res. 2020;45:2840–55.

    Article  CAS  PubMed  Google Scholar 

  313. Wang Y, Niu Q, Dai J, Shi H, Zhang J. circCUX1 promotes neuroblastoma progression and glycolysis by regulating the miR-338-3p/PHF20 axis. Gen Physiol Biophys. 2021;40:17–29.

    Article  PubMed  Google Scholar 

  314. Lin Q, Chen J, Zheng X, Zhang Y, Tao X, Ye J. Circular RNA Circ_ANKMY2 regulates temporal lobe epilepsy progression via the miR-106b-5p/FOXP1 Axis. Neurochem Res. 2020;45:3034–44.

    Article  CAS  PubMed  Google Scholar 

  315. Chen W, Hao X, Yang B, Zhang Y, Sun L, Hua Y, et al. MYCN‑amplified neuroblastoma cell‑derived exosomal miR‑17‑5p promotes proliferation and migration of non‑MYCN amplified cells. Mol Med Rep. 2021;23:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Sharif S, Ghahremani MH, Soleimani M. Differentiation induction and proliferation inhibition by a cell-free approach for delivery of exogenous mirnas to neuroblastoma cells using mesenchymal. Stem Cells Cell J. 2021;22:556–64.

    PubMed  Google Scholar 

  317. Colletti M, Tomao L, Galardi A, Paolini A, Di Paolo V, De Stefanis C, et al. Neuroblastoma-secreted exosomes carrying miR-375 promote osteogenic differentiation of bone-marrow mesenchymal stromal cells. J Extracell Vesicles. 2020;9:1774144.

  318. Morini M, Cangelosi D, Segalerba D, Marimpietri D, Raggi F, Castellano A, et al. Exosomal microRNAs from longitudinal liquid biopsies for the prediction of response to induction chemotherapy in high-risk neuroblastoma patients: a proof of concept SIOPEN study. Cancers. 2019;11:1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Ma J, Xu M, Yin M, Hong J, Chen H, Gao Y, et al. Exosomal hsa-miR199a-3p promotes proliferation and migration in neuroblastoma. Front Oncol. 2019;9:459.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, et al. Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res. 2019;79:1151–64.

  321. Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107:djv135.

    Article  PubMed  PubMed Central  Google Scholar 

  322. Haug BH, Hald ØH, Utnes P, Roth SA, Løkke C, Flægstad T, et al. Exosome-like extracellular vesicles from MYCN-amplified neuroblastoma cells contain oncogenic miRNAs. Anticancer Res. 2015;35:2521–30.

    CAS  PubMed  Google Scholar 

  323. Shi L, Xiao R, Wang M, Zhang M, Weng N, Zhao X, et al. MicroRNA‑342‑3p suppresses proliferation and invasion of nasopharyngeal carcinoma cells by directly targeting Cdc42. Oncol Rep. 2018;40:2750–7.

    CAS  PubMed  Google Scholar 

  324. Liu Z, Wang W, Jiang J, Bao E, Xu D, Zeng Y, et al. Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS ONE. 2013;8:e73991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HM involved in conception, design, statistical analysis and drafting of the manuscript. AAA, AJY, SA, SAA, RS, LK, AS, MSHK, AJ, SSTZ, MRH, and SATZ contributed in data collection and manuscript drafting. All authors approved the final version for submission.

Corresponding authors

Correspondence to Leila Kalantari, Sayyed Alireza Talaei Zavareh or Hamed Mirzaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoushirvani, A.A., Jafarian Yazdi, A., Amirabadi, S. et al. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 30, 1190–1208 (2023). https://doi.org/10.1038/s41417-023-00623-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00623-0

Search

Quick links