Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PCA3 controls chromatin organization and p53 signal activation by regulating LAP2α-lamin A complexes

Abstract

Prostate cancer antigen 3 (PCA3) is a prostate cancer-specific long noncoding RNA (lncRNA). Here, we report that lncRNA PCA3 plays a role in prostate cancer progression that is mediated by nucleoplasmic lamins. PCA3 interacts with the C-terminal region of lamina-associated polypeptide (LAP) 2α. The C-terminal region of LAP2α includes tumor suppressor protein retinoblastoma (pRb)- and lamin-binding domains, and it is necessary for the regulation and stabilization of the nucleoplasmic pool of lamin A. PCA3 inhibits the interaction of LAP2α with lamin A through binding with the C-terminus of LAP2α. The level of nucleoplasmic lamin A/C is increased by knockdown of PCA3. Together, the level of LAP2α within the nucleus is increased by PCA3 knockdown. In PCA3 knockdown cells, the levels of HP1γ, trimethylation of Lys9 on histone H3 (H3K9me3), and trimethylation of Lys36 on histone H3 (H3K36me3) are upregulated. In contrast, trimethylation of Lys4 on histone H3 (H3K4me3) is downregulated. We further demonstrate that activation of the p53 signaling pathway and cell cycle arrest are promoted in the absence of PCA3. These findings support a unique mechanism in which prostate cancer-specific lncRNA controls chromatin organization via regulation of the nucleoplasmic pool of lamins. This proposed mechanism suggests that cancer progression may be mediated by nuclear lamins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interaction of PCA3 with LAP2α.
Fig. 2: PCA3 inhibits interaction of LAP2α with lamin A.
Fig. 3: Upregulation of nucleoplasmic lamin A/C and LAP2α by PCA3 knockdown.
Fig. 4: Chromatin abnormalities in PCA3 knockdown cells.
Fig. 5: Activation of p53 signaling by knockdown of PCA3.
Fig. 6: Knockdown of PCA3 reduced cell proliferation of prostate cancer cells.

Similar content being viewed by others

References

  1. Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179:1033–55.

    Article  CAS  Google Scholar 

  2. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172:393–407.

    Article  CAS  Google Scholar 

  3. Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol. 2016;17:756–70.

    Article  CAS  Google Scholar 

  4. Ramnarine VR, Kobelev M, Gibb EA, Nouri M, Lin D, Wang Y, et al. The evolution of long noncoding RNA acceptance in prostate cancer initiation, progression, and its clinical utility in disease management. Eur Urol. 2019;76:546–59.

    Article  CAS  Google Scholar 

  5. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59:5975–9.

    CAS  PubMed  Google Scholar 

  6. Ferreira LB, Palumbo A, de Mello KD, Sternberg C, Caetano MS, de Oliveira FL, et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer. 2012;12:507.

    Article  CAS  Google Scholar 

  7. Lemos AE, Ferreira LB, Batoreu NM, de Freitas PP, Bonamino MH, Gimba ER. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumour Biol. 2016;37:11339–48.

    Article  CAS  Google Scholar 

  8. Salameh A, Lee AK, Cardó-Vila M, Nunes DN, Efstathiou E, Staquicini FI, et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci USA. 2015;112:8403–8.

    Article  CAS  Google Scholar 

  9. Dobrzynska A, Gonzalo S, Shanahan C, Askjaer P. The nuclear lamina in health and disease. Nucleus. 2016;7:233–48.

    Article  CAS  Google Scholar 

  10. Barton LJ, Soshnev AA, Geyer PK. Networking in the nucleus: a spotlight on LEM-domain proteins. Curr Opin Cell Biol. 2015;34:1–8.

    Article  CAS  Google Scholar 

  11. Burke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol. 2013;14:13–24.

    Article  CAS  Google Scholar 

  12. Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM. Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J. 2001;20:4399–407.

    Article  CAS  Google Scholar 

  13. Markiewicz E, Dechat T, Foisner R, Quinlan RA, Hutchison CJ. Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell. 2002;13:4401–13.

    Article  CAS  Google Scholar 

  14. Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R. Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. J Cell Sci. 2000;113:3473–84.

    Article  CAS  Google Scholar 

  15. Gesson K, Vidak S, Foisner R. Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. Semin Cell Dev Biol. 2014;29:116–24.

    Article  CAS  Google Scholar 

  16. Naetar N, Ferraioli S, Foisner R. Lamins in the nuclear interior - life outside the lamina. J Cell Sci. 2017;130:2087–96.

    Article  CAS  Google Scholar 

  17. Naetar N, Korbei B, Kozlov S, Kerenyi MA, Dorner D, Kral R, et al. Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol. 2008;10:1341–8.

    Article  CAS  Google Scholar 

  18. Scaffidi P, Misteli T. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med. 2005;11:440–5.

    Article  CAS  Google Scholar 

  19. Irianto J, Pfeifer CR, Ivanovska IL, Swift J, Discher DE. Nuclear lamins in cancer. Cell Mol Bioeng. 2016;9:258–67.

    Article  CAS  Google Scholar 

  20. Marangoni K, Neves AF, Rocha RM, Faria PR, Alves PT, Souza AG, et al. Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection. Sci Rep. 2015;5:12090.

    Article  CAS  Google Scholar 

  21. Dechat T, Vlcek S, Foisner R. Review: lamina-associated polypeptide 2 isoforms and related proteins in cell cycle-dependent nuclear structure dynamics. J Struct Biol. 2000;129:335–45.

    Article  CAS  Google Scholar 

  22. Hennekam RC. Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A. 2006;140:2603–24.

    Article  Google Scholar 

  23. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312:1059–63.

    Article  CAS  Google Scholar 

  24. Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep. 2015;16:1467–81.

    Article  CAS  Google Scholar 

  25. Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137:609–22.

    Article  CAS  Google Scholar 

  26. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.

    Article  CAS  Google Scholar 

  27. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2:103–12.

    Article  CAS  Google Scholar 

  28. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–7.

    Article  CAS  Google Scholar 

  29. Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M, Ben-Harush K, et al. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–4.

    Article  CAS  Google Scholar 

  30. Gesson K, Rescheneder P, Skoruppa MP, von Haeseler A, Dechat T, Foisner R. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res. 2016;26:462–73.

    Article  CAS  Google Scholar 

  31. Varela I, Cadiñanos J, Pendás AM, Gutiérrez-Fernández A, Folgueras AR, Sánchez LM, et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature. 2005;437:564–8.

    Article  CAS  Google Scholar 

  32. Ochiai A, Okihara K, Kamoi K, Oikawa T, Shimazui T, Murayama S, et al. Clinical utility of the prostate cancer gene 3 (PCA3) urine assay in Japanese men undergoing prostate biopsy. BJU Int. 2013;111:928–33.

    Article  CAS  Google Scholar 

  33. Hessels D, Schalken JA. The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol. 2009;6:255–61.

    Article  CAS  Google Scholar 

  34. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article  CAS  Google Scholar 

  35. Ito S, Fujiyama-Nakamura S, Kimura S, Lim J, Kamoshida Y, Shiozaki-Sato Y, et al. Epigenetic silencing of core histone genes by HERS in Drosophila. Mol Cell. 2012;45:494–504.

    Article  CAS  Google Scholar 

  36. Yokoyama A, Igarashi K, Sato T, Takagi K, Otsuka IM, Shishido Y, et al. Identification of myelin transcription factor 1 (MyT1) as a subunit of the neural cell type-specific lysine-specific demethylase 1 (LSD1) complex. J Biol Chem. 2014;289:18152–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Kyoko Shimizu and Ms. Yukako Morioka for technical assistance.

Funding

This work was supported in part by JSPS (Grant-in-Aid for Scientific Research, Numbers 17K16809 and 19K09698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saya Ito.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, S., Ueda, T., Yokoyama, A. et al. PCA3 controls chromatin organization and p53 signal activation by regulating LAP2α-lamin A complexes. Cancer Gene Ther 29, 358–368 (2022). https://doi.org/10.1038/s41417-021-00314-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00314-8

Search

Quick links