Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System

Abstract

The grading of gliomas based on histological features has been a subject of debate for several decades. A consensus has not yet been reached because of technical limitations and inter-observer variations. While the traditional grading system has failed to stratify the risk of IDH-mutant astrocytoma, canonical histological and proliferative markers may be applicable to the risk stratification of IDH-wild-type astrocytoma. Numerous studies have examined molecular markers in order to obtain more clinically relevant information that will improve the risk stratification of gliomas. The CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, were identified as independent molecular markers of the worst clinical outcomes. Therefore, the 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System adopted these molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, respectively, as a grading system within tumor types. Of note, several recent studies have shown that some low-grade IDH-wild-type astrocytoma lacking both the molecular glioblastoma signature and genetic alterations typical of pediatric-type gliomas may demonstrate a relatively indolent clinical course, suggesting the existence of lower-grade adult IDH-wild-type astrocytoma. In terms of oligodendroglioma, IDH-mutant, and 1p/19q codeleted, consistent makers that predict poor outcomes have not yet been identified, and, thus, the current criteria have remained unchanged. Molecular testing to fulfill the revised WHO criteria is, however, not always available worldwide, and in that case, an integrated diagnosis combining all available complementary information is highly recommended. This review discusses controversial issues surrounding legacy grading systems and newly identified potential genetic markers of adult diffuse gliomas and provides perspectives on future grading systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Examples of integrated diagnoses for IDH-mutant gliomas in resource-limited settings.

References

  1. 1.

    Louis, D. N., Ohgaki H., Wiestler O. D., Cavenee W. K. WHO Classification of Tumours of the Central Nervous System (International Agency for Research on Cancer, Lyon, 2016).

  2. 2.

    Komori, T. Updated 2016 WHO classification of tumors of the CNS: turning the corner where molecule meets pathology. Brain Tumor Pathol. 34, 139–140 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Akagi, Y. et al. Reclassification of 400 consecutive glioma cases based on the revised 2016WHO classification. Brain Tumor Pathol. 35, 81–89 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Ohba, S., Kuwahara, K., Yamada, S., Abe, M. & Hirose, Y. Correlation between IDH, ATRX, and TERT promoter mutations in glioma. Brain Tumor Pathol. 37, 33–40 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Komori, T. Updating the grading criteria for adult diffuse gliomas: beyond the WHO2016CNS classification. Brain Tumor Pathol. 37, 1–4 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Louis, D. N. & von Deimling, A. Grading of diffuse astrocytic gliomas: Broders, Kernohan, Zulch, the WHO… and Shakespeare. Acta Neuropathol. 134, 517–520 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    WHO Classification of Tumours Editorial Board. World Health Organization Classification of Tumours of the Central Nervous System (International Agency for Research on Cancer, Lyon, 2021) in press.

  8. 8.

    Wright, J. R. & Albert, C. Jr Broders’ paradigm shifts involving the prognostication and definition of cancer. Arch. Pathol. Lab. Med. 136, 1437–1446 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Etienne, D. et al. James Watson Kernohan (1896-198): frontiers in neuropathology. Clin. Anat. 25, 527–529 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Scheithauer, B. W. Development of the WHO classification of tumors of the central nervous system: a historical perspective. Brain Pathol. 19, 551–564 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Zülch, K. J. Histological Typing of Tumours of the Central Nervous System (World Health Organization, Geneva, 1979).

  12. 12.

    Kleihues, P., Burger, P. C., Scheithauer, B. W. Histological Typing of Tumours of the Central Nevous System (Springer-Verlag, Berlin, 1993).

  13. 13.

    Daumas-Duport, C., Scheithauer, B., O’Fallon, J. & Kelly, P. Grading of astrocytomas. A simple and reproducible method. Cancer 62, 2152–2165 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Perry, A., Brat D. J. Practical Surgical Neuropathology (Elsevier, Philadelphia, 2018).

  16. 16.

    Takei, H., Bhattacharjee, M. B., Rivera, A., Dancer, Y. & Powell, S. Z. New immunohistochemical markers in the evaluation of central nervous system tumors: a review of 7 selected adult and pediatric brain tumors. Arch. Pathol. Lab. Med. 131, 234–241 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Habberstad, A. H., Gulati, S. & Torp, S. H. Evaluation of the proliferation markers Ki-67/MIB-1, mitosin, survivin, pHH3, and DNA topoisomerase IIalpha in human anaplastic astrocytomas–an immunohistochemical study. Diagn. Pathol. 6, 43–51 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Suzuki, A. et al. Modified rapid immunohistochemical staining for intraoperative diagnosis of malignant brain tumors. Brain Tumor Pathol. 34, 141–148 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Duregon, E. et al. Ki-67 proliferation index but not mitotic thresholds integrates the molecular prognostic stratification of lower grade gliomas. Oncotarget 7, 2190–2198 (2016).

    Article  Google Scholar 

  20. 20.

    Kleihues, P., Cavenee, W. K. Pathology and Genetics of Tumors of the Nervous System (World Health Organization classification of tumors, IARC Press, Lyon, France, 2000).

  21. 21.

    Giannini, C. et al. Cellular proliferation in pilocytic and diffuse astrocytomas. J. Neuropathol. Exp. Neurol. 58, 46–53 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Arima, N. et al. The importance of tissue handling of surgically removed breast cancer for an accurate assessment of the Ki-67 index. J. Clin. Pathol. 69, 255–259 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Louis, D. N. et al. Announcing cIMPACT-NOW: the consortium to inform molecular and practical approaches to CNS tumor taxonomy. Acta Neuropathol. 133, 1–3 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Louis, D. N. et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 30, 844–856 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Arita, H. et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol. Commun. 4, 79–93 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Eckel-Passow, J. E. et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med. 372, 2499–2508 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Brat, D. J., Verhaak, R. G., Aldape, K. D., Yung, W. K. & Salama, S. R. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Olar, A. et al. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol. 129, 585–596 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Yoda, R. A. et al. Mitotic index thresholds do not predict clinical outcome for IDH-mutant astrocytoma. J. Neuropathol. Exp. Neurol. 78, 1002–1010 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231–1251 (2021).

    PubMed  Article  Google Scholar 

  35. 35.

    Yang, R. R. et al. IDH mutant lower grade (WHO Grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations. Brain Pathol. 30, 541–553 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Li, K. K. et al. Identification of subsets of IDH-mutant glioblastomas with distinct epigenetic and copy number alterations and stratified clinical risks. Neurooncol. Adv. 1, 1–11 (2019).

    Google Scholar 

  37. 37.

    Korshunov, A. et al. Integrated molecular characterization of IDH-mutant glioblastomas. Neuropathol. Appl. Neurobiol. 45, 108–118 (2019).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Binder, H. et al. DNA methylation, transcriptome and genetic copy number signatures of diffuse cerebral WHO grade II/III gliomas resolve cancer heterogeneity and development. Acta Neuropathol. Commun. 7, 59 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Ceccarelli, M. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164, 550–563 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Ferreyra Vega, S. et al. DNA methylation profiling for molecular classification of adult diffuse lower-grade gliomas. Clin Epigenet. 13, 102–113 (2021).

    CAS  Article  Google Scholar 

  41. 41.

    Cimino, P. J. et al. Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery. Acta Neuropathol. Commun. 5, 39–53 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Cimino, P. J. & Holland, E. C. Targeted copy number analysis outperforms histological grading in predicting patient survival for WHO grade II/III IDH-mutant astrocytomas. Neuro Oncol. 21, 819–821 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Reis, G. F. et al. CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J. Neuropathol. Exp. Neurol. 74, 442–452 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Shirahata, M. et al. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol. 136, 153–166 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Appay, R. et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol. 21, 1519–1528 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Aoki, K. et al. Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol. 20, 66–77 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Phillips, J. J. et al. PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathol. 23, 565–573 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Weller, M., et al. Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol. 129, 679–693 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Stichel, D. et al. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol. 136, 793–803 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Tesileanu, C. M. S. et al. Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro Oncol. 22, 515–523 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Kuwahara, K. et al. Clinical, histopathological, and molecular analyses of IDH-wild-type WHO grade II–III gliomas to establish genetic predictors of poor prognosis. Brain Tumor Pathol. 36, 135–143 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Reuss, D. E. et al. Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol. 130, 407–417 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Capper, D. et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol. 136, 181–210 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Richardson, T. E., Hatanpaa, K. J. & Walker, J. M. Molecular characterization of “True” low-grade IDH-wild-type astrocytomas. J. Neuropathol. Exp. Neurol. 80, 431–435 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Berzero, G. et al. IDH-wild-type lower-grade diffuse gliomas: the importance of histological grade and molecular assessment for prognostic stratification. Neuro Oncol. 23, 955–966 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Giannini, C. & Giangaspero, F. TERT promoter mutation: is it enough to call a WHO grade II astrocytoma IDH wild-type glioblastoma? Neuro Oncol. 23, 865–866 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Fujimoto, K. et al. TERT promoter mutation status is necessary and sufficient to diagnose IDH-wild-type diffuse astrocytic glioma with molecular features of glioblastoma. Acta Neuropathol. 142, 323–338 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Giannini, C. et al. Anaplastic oligodendroglial tumors: refining the correlation among histopathology, 1p 19q deletion and clinical outcome in Intergroup Radiation Therapy Oncology Group Trial 9402. Brain Pathol. 18, 360–369 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Giannini, C. et al. Oligodendrogliomas: reproducibility and prognostic value of histologic diagnosis and grading. J. Neuropathol. Exp. Neurol. 60, 248–262 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Komori, T. et al. Controversies over the diagnosis of oligodendroglioma: a report from the satellite workshop at the 4th international symposium of brain tumor pathology, Nagoya Congress Center, May 23, 2012. Brain Tumor Pathol. 30, 253–261 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Halani, S. H. et al. Multi-faceted computational assessment of risk and progression in oligodendroglioma implicates NOTCH and PI3K pathways. NPJ Precis. Oncol. 2, 24–33 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Labreche, K. et al. TCF12 is mutated in anaplastic oligodendroglioma. Nat. Commun. 6, 7207–7216 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    So, J., Mamatjan, Y., Zadeh, G., Aldape, K. & Moraes, F. Y. Transcription factor networks of oligodendrogliomas treated with adjuvant radiotherapy or observation inform prognosis. Neuro Oncol. 23, 795–802 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro Oncol. 22, iv1–iv96 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Tateishi, K., Nakamura, T. & Yamamoto, T. Molecular genetics and therapeutic targets of pediatric low-grade gliomas. Brain Tumor Pathol. 36, 74–83 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Komori, T. The molecular framework of pediatric-type diffuse gliomas: shifting toward the revision of the WHO classification of tumors of the central nervous system. Brain Tumor Pathol. 38, 1–3 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Ellison, D. W. et al. cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors. Brain Pathol. 30, 863–866 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Wick, W. et al. MGMT testing–the challenges for biomarker-based glioma treatment. Nat. Rev. Neurol. 10, 372–385 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Friedman, H. S. et al. DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J. Clin. Oncol. 16, 3851–3857 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Wick, W. et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 13, 707–715 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Fukai, J. et al. Molecular characteristics and clinical outcomes of elderly patients with IDH-wild-type glioblastomas: comparative study of older and younger cases in Kansai Network cohort. Brain Tumor Pathol. 37, 50–59 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Malta, T. M. et al. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol. 20, 608–620 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Aoki, K. & Natsume, A. Overview of DNA methylation in adult diffuse gliomas. Brain Tumor Pathol. 36, 84–91 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Woo, H. Y. et al. Glioblastomas harboring gene fusions detected by next-generation sequencing. Brain Tumor Pathol. 37, 136–144 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Ellison, D. W. et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF(V600E) mutation. Acta Neuropathol. 137, 683–687 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Cohen, A. et al. DNA copy number analysis of grade II–III and grade IV gliomas reveals differences in molecular ontogeny including chromothripsis associated with IDH mutation status. Acta Neuropathol. Commun. 3, 34–46 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Mirchia, K. et al. Establishing a prognostic threshold for total copy number variation within adult IDH-mutant grade II/III astrocytomas. Acta Neuropathol. Commun. 7, 121–124 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Adachi, J.-i et al. Droplet digital PCR assay for detecting TERT promoter mutations in patients with glioma. Brain Tumor Pathol. 38, 201–209 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Miki, S. et al. Highly sensitive detection of TERT promoter mutations in recurrent glioblastomas using digital PCR. Brain Tumor Pathol. 37, 154–158 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Yokogami, K. et al. Impact of PCR-based molecular analysis in daily diagnosis for the patient with gliomas. Brain Tumor Pathol. 35, 141–147 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Louis, D. N. et al. Data sets for the reporting of tumors of the central nervous system: recommendations from the International Collaboration on Cancer Reporting. Arch. Pathol. Lab. Med. 144, 196–206 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Andreiuolo, F., Mazeraud, A., Chretien, F. & Pietsch, T. A global view on the availability of methods and information in the neuropathological diagnostics of CNS tumors: results of an international survey among neuropathological units. Brain Pathol. 26, 551–554 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Louis, D. N. et al. International Society Of Neuropathology-Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol. 24, 429–435 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Sonoda, Y. et al. Practical procedures for the integrated diagnosis of astrocytic and oligodendroglial tumors. Brain Tumor Pathol. 36, 56–62 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Rajeswarie, R. T., Rao, S., Nandeesh, B. N., Yasha, T. C. & Santosh, V. A simple algorithmic approach using histology and immunohistochemistry for the current classification of adult diffuse glioma in a resource-limited set-up. J. Clin. Pathol. 71, 323–329 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Yamauchi, T. et al. Radiological characteristics based on isocitrate dehydrogenase mutations and 1p/19q codeletion in grade II and III gliomas. Brain Tumor Pathol. 35, 148–158 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Natsumeda, M., et al. Predicting BRAF V600E mutation in glioblastoma: utility of radiographic features. Brain Tumor Pathol. (2021)

  90. 90.

    Roux, A. et al. Prognostic relevance of adding MRI data to WHO 2016 and cIMPACT-NOW updates for diffuse astrocytic tumors in adults. Working toward the extended use of MRI data in integrated glioma diagnosis. Brain Pathol. 31, e12929 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Johnson, D. R. et al. Genetically defined oligodendroglioma is characterized by indistinct tumor borders at MRI. Am. J. Neuroradiol. 38, 678–684 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Smits, M. Imaging of oligodendroglioma. Br. J. Radiol. 89, 20150857 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Latysheva, A. et al. Dynamic susceptibility contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors: histogram analysis approach. Neuroradiology 61, 545–555 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Fellah, S. et al. Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis? Am. J. Neuroradiol. 34, 1326–1333 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Chawla, S. et al. Differentiation between oligodendroglioma genotypes using dynamic susceptibility contrast perfusion-weighted imaging and proton MR spectroscopy. Am. J. Neuroradiol. 34, 1542–1549 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Broen, M. P. G. et al. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro Oncol. 20, 1393–1399 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Jain, R. et al. “Real world” use of a highly reliable imaging sign: “T2-FLAIR mismatch” for identification of IDH mutant astrocytomas. Neuro Oncol. 22, 936–943 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Saito, T. et al. Calcification on CT is a simple and valuable preoperative indicator of 1p/19q loss of heterozygosity in supratentorial brain tumors that are suspected grade II and III gliomas. Brain Tumor Pathol. 33, 175–182 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Ammendola, S., et al. H3K27me3 immunostaining is diagnostic and prognostic in diffuse gliomas with oligodendroglial or mixed oligoastrocytic morphology. Virchows Arch. https://doi.org/10.1007/s00428-021-03134-1 (2021).

  100. 100.

    Filipski, K. et al. Lack of H3K27 trimethylation is associated with 1p/19q codeletion in diffuse gliomas. Acta Neuropathol. 138, 331–334 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Yamamichi, A. et al. Immunohistochemical ATRX expression is not a surrogate for 1p19q codeletion. Brain Tumor Pathol. 35, 106–113 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Louis, D. N. et al. cIMPACT-NOW update 1: Not Otherwise Specified (NOS) and Not Elsewhere Classified (NEC). Acta Neuropathol. 135, 481–484 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Louis, D. N. et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 135, 639–642 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Chapel, D. B. et al. MTAP immunohistochemistry is an accurate and reproducible surrogate for CDKN2A fluorescence in situ hybridization in diagnosis of malignant pleural mesothelioma. Mod. Pathol. 33, 245–254 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Satomi, K. et al. Utility of methylthioadenosine phosphorylase immunohistochemical deficiency as a surrogate for CDKN2A homozygous deletion in the assessment of adult-type infiltrating astrocytoma. Mod. Pathol. 34, 688–700 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Cui, M. & Zhang, D. Y. Artificial intelligence and computational pathology. Lab Investig. 101, 412–422 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript is dedicated to my late mentor, Dr. Bernd W. Scheithauer from the Mayo Clinic.

Author information

Affiliations

Authors

Contributions

This manuscript is the sole product of the author.

Corresponding author

Correspondence to Takashi Komori.

Ethics declarations

Competing interests

The author declares no competing interests.

Ethical approval

This review did not have any ethical issue.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komori, T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. Lab Invest (2021). https://doi.org/10.1038/s41374-021-00667-6

Download citation

Search

Quick links