Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ASIC1a promotes the proliferation of synovial fibroblasts via the ERK/MAPK pathway


Synovial hyperplasia, a profound alteration in the structure of synovial tissue, is the basis for cumulative joint destruction in rheumatoid arthritis (RA). It is generally accepted that controlling synovial hyperplasia can delay the progression of RA. As one of the most intensively studied isoforms of acid-sensing ion channels (ASICs), ASIC1a contributes to various physiopathologic conditions, including RA, due to its unique property of being permeable to Ca2+. However, the role and the regulatory mechanisms of ASIC1a in synovial hyperplasia are poorly understood. Here, rats induced with adjuvant arthritis (AA) and human primary synovial fibroblasts were used in vivo and in vitro to investigate the role of ASIC1a in the proliferation of RA synovial fibroblasts (RASFs). The results show that the expression of ASIC1a was significantly increased in synovial tissues and RASFs obtained from patients with RA as well as in the synovium of rats with AA. Moreover, extracellular acidification improved the ability of RASFs colony formation and increased the expression of proliferation cell nuclear antigen (PCNA) and Ki67, which was abrogated by the specific ASIC1a inhibitor psalmotoxin-1 (PcTX-1) or ASIC1a-short hairpin RNA (ASIC1a-shRNA), suggesting that extracellular acidification promotes the proliferation of RASFs by activating ASIC1a. In addition, the activation of c-Raf and extracellular signal-regulated protein kinases (ERKs) signaling was blocked with PcTX-1 or ASIC1a-shRNA and the proliferation of RASFs was further inhibited by the ERK inhibitor (U0126), indicating that ERK/MAPK signaling contributes to the proliferation process of RASFs promoted by the activation of ASIC1a. These findings gave us an insight into the role of ASIC1a in the proliferation of RASFs, which may provide solid foundation for ASIC1a as a potential target in the treatment of RA.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Pathological features and expression of ASIC1a in RA synovium.
Fig. 2: The high expression of ASIC1a in RA synovial fibroblasts.
Fig. 3: Effect of acidification on proliferation of RASFs.
Fig. 4: Effect of ASIC1a inhibition on the proliferation of RASFs.
Fig. 5: Effect of ASIC1a on the proliferation of RASFs.
Fig. 6: Effect of ASIC1a on the proliferation of synovial tissue in vivo.
Fig. 7: Effect of ASIC1a on the proliferation of RASFs through ERK/MAPK signaling.

Data availability

The data sets used during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Liu H, Zhu Y, Gao Y, Qi D, Zhao L, Zhao L, et al. NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis. Cell Death Dis. 2020;11:129.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16:458–68.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Noss E, Brenner M. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol Rev. 2008;223:252–70.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Liu Y, Pan YF, Xue YQ, Fang LK, Guo XH, Guo X, et al. uPAR promotes tumor-like biologic behaviors of fibroblast-like synoviocytes through PI3K/Akt signaling pathway in patients with rheumatoid arthritis. Cell Mol Immunol. 2018;15:171–81.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Mor A, Abramson SB, Pillinger MH. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol. 2005;115:118–28.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Neumann E, Riepl B, Knedla A, Lefevre S, Tarner IH, Grifka J, et al. Cell culture and passaging alters gene expression pattern and proliferation rate in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther. 2010;12:R83.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Hu F, Mu R, Zhu J, Shi L, Li Y, Liu X, et al. Hypoxia and hypoxia-inducible factor-1alpha provoke toll-like receptor signalling-induced inflammation in rheumatoid arthritis. Ann Rheum Dis. 2014;73:928–36.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Tian Y, Bresenitz P, Reska A, El Moussaoui L, Beier CP, Grunder S, et al. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3. Sci Rep. 2017;7:13674.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Zhou R, Wu X, Wang Z, Ge J, Chen F. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. Int Immunopharmacol. 2015;29:748–60.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Geborek P, Saxne T, Pettersson H, Wollheim F. Synovial fluid acidosis correlates with radiological joint destruction in rheumatoid arthritis knee joints. J Rheumatol. 1989;16:468–72.

    CAS  PubMed  Google Scholar 

  11. 11.

    Hu F, Yang S, Zhao D, Zhu S, Wang Y, Li J. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-κB translocation and ROS production in synoviocytes. Biochem Biophys Res Commun. 2012;424:196–200.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Zhou R, Dai B, Xie Y, Wu X, Wang Z, Li Y, et al. Interleukin-1β and tumor necrosis factor-α augment acidosis-induced rat articular chondrocyte apoptosis via nuclear factor-kappaB-dependent upregulation of ASIC1a channel. Biochim Biophys Acta Mol Basis Dis. 2018;1864:162–77.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Goldie I, Nachemson A. Synovial pH in rheumatoid knee-joints. I. The effect of synovectomy. Acta Orthop Scand. 1969;40:634–41.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Quagliato L, Freire R, Nardi A. The role of acid-sensitive ion channels in panic disorder: a systematic review of animal studies and meta-analysis of human studies. Transl Psychiatry. 2018;8:185.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Investig. 2002;110:1185–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Chen Y, Zhu C, Zhu F, Dai B, Song S, Wang Z, et al. Necrostatin-1 ameliorates adjuvant arthritis rat articular chondrocyte injury via inhibiting ASIC1a-mediated necroptosis. Biochem Bio Res Commun. 2018;504:843–50.

    CAS  Article  Google Scholar 

  17. 17.

    Song S, Tao J, Li S, Qian X, Niu R, Wang C, et al. 17β-estradiol attenuates rat articular chondrocyte injury by targeting ASIC1a-mediated apoptosis. Mol Cell Endocrinol. 2020;505:110742.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Bianchi L, Driscoll M. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron. 2002;34:337–40.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Grunder S, Pusch M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacology. 2015;94:9–18.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Li X, Wu FR, Xu RS, Hu W, Jiang DL, Ji C, et al. Acid-sensing ion channel 1a-mediated calcium influx regulates apoptosis of endplate chondrocytes in intervertebral discs. Expert Opin Ther Targets. 2014;18:1–14.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–7.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Haynes WD, Atkinson WE, Morris WD, Sternberg JJ. Early breast cancer. J Ark Med Soc. 1987;83:353–4.

    CAS  PubMed  Google Scholar 

  23. 23.

    Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci. 2013;14:461–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Sun X, Zhao D, Li Y, Sun Y, Lei X, Zhang J, et al. Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol Rep. 2013;30:2852–8.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Jin C, Yuan FL, Gu YL, Li X, Liu MF, Shen XM, et al. Over-expression of ASIC1a promotes proliferation via activation of the beta-catenin/LEF-TCF axis and is associated with disease outcome in liver cancer. Oncotarget. 2017;8:25977–88.

    PubMed  Article  Google Scholar 

  26. 26.

    Wang Y, Sun Y, Zuo L, Wang Y, Huang Y. ASIC1a promotes high glucose and PDGF-induced hepatic stellate cell activation by inducing autophagy through CaMKKbeta/ERK signaling pathway. Toxicol Lett. 2019;300:1–9.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Zhou B, Wang Z, Zhao Y, Brautigan D, Zhang Z. The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem. 2002;277:31818–25.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68:320–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Sazonova O, Blishchenko E, Tolmazova A, Khachin D, Leontiev K, Karelin A, et al. Stimulation of fibroblast proliferation by neokyotorphin requires Ca influx and activation of PKA, CaMK II and MAPK/ERK. FEBS J. 2007;274:474–84.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Brummer T, McInnes C. RAF kinase dimerization: implications for drug discovery and clinical outcomes. Oncogene. 2020;39:4155–69.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Fearon U, Hanlon M, Wade S, Fletcher J. Altered metabolic pathways regulate synovial inflammation in rheumatoid arthritis. Clin Exp Immunol. 2019;197:170–80.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Guo X, Chen G. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis. Front Immunol. 2020;11:1668.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Xiong Z, Zhu X, Chu X, Minami M, Hey J, Wei W, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Yermolaieva O, Leonard A, Schnizler M, Abboud F, Welsh M. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA. 2004;101:6752–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Karpus O, Heutinck K, Wijnker P, Tak P, Hamann J. Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts. PloS one. 2012;7:e35606.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Zhang Y, Qian X, Yang X, Niu R, Song S, Zhu F, et al. ASIC1a induces synovial inflammation via the Ca/NFATc3/ RANTES pathway. Theranostics. 2020;10:247–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Fitzgerald R, Omary M. Triadafilopoulos G acid modulation of HT29 cell growth and differentiation. An in vitro model for Barrett’s esophagus. J Cell Sci. 1997;110:663–71.

  38. 38.

    Sarosi G, Jaiswal K, Herndon E, Lopez-Guzman C, Spechler S, Souza R, et al. Acid increases MAPK-mediated proliferation in Barrett’s esophageal adenocarcinoma cells via intracellular acidification through a Cl-/HCO3- exchanger. Am J Physiol Gastrointest Liver Physiol. 2005;289:G991–7.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Zhang Q, Liu J, Zhang M, Wei S, Li R, Gao Y, et al. Apoptosis induction of fibroblast-like synoviocytes is an important molecular-mechanism for herbal medicine along with its active components in treating rheumatoid arthritis. Biomolecules. 2019;9:79540.

  40. 40.

    Dai B, Zhu F, Chen Y, Zhou R, Wang Z, Xie Y, et al. ASIC1a promotes acid-induced autophagy in rat articular chondrocytes through the AMPK/FoxO3a pathway. Int J Mol Sci. 2017;18:2125.

  41. 41.

    Gao W, Xu Y, Ge J, Chen F. Inhibition of acid‑sensing ion channel 1a attenuates acid‑induced activation of autophagy via a calcium signaling pathway in articular chondrocytes. Int J Mol Med. 2019;43:1778–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lawrence M, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, et al. The roles of MAPKs in disease. Cell Res. 2008;18:436–42.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Liu F, Feng X, Zhu S, Huang H, Chen Y, Pan Y, et al. Sonic hedgehog signaling pathway mediates proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis MAPK/ERK signaling pathway. Front Immunol. 2018;9:2847.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Niu R, Hang X, Feng Y, Zhang Y, Qian X, Song S, et al. ASIC1a promotes synovial invasion of rheumatoid arthritis via Ca/Rac1 pathway. Int Immunopharmacol. 2020;79:106089.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Hirasawa Y, Kato Y, Fujita K. Transurethral enucleation with bipolar for benign prostatic hyperplasia: 2-year outcomes and the learning curve of a single surgeon’s experience of 603 consecutive patients. J Endourol. 2017;31:679–85.

    PubMed  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (grant number 81873986).

Author information




JT: Writing—review and editing. ZL: Data analysis. XQ: Performed study concept. YZ: Performed development methodology. YX: Review and revision of the paper. JS: Investigation and validation. XH: Supervision. SS: Investigation. XP: Supervision and editing. FC: provided technical and material support and editing. All authors read and approved the final paper.

Corresponding author

Correspondence to Feihu Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, J., Lu, Z., Su, J. et al. ASIC1a promotes the proliferation of synovial fibroblasts via the ERK/MAPK pathway. Lab Invest 101, 1353–1362 (2021).

Download citation


Quick links