Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Redox distress and genetic defects conspire in systemic autoinflammatory diseases

Key Points

  • Despite several advances, the pathogenesis of systemic autoinflammatory diseases (SAIDs) is only partially understood, and how mutations in causative genes lead to increased IL-1β secretion is unclear in many of these conditions

  • Circulating monocytes from patients with SAIDs are in a state of stress, possibly owing to the presence of mutated proteins

  • Levels of damage-associated molecular patterns (DAMPs) are increased in patients with SAIDs, and these concur with cytokines to generate amplifying loops that sustain inflammation

  • We propose that stress lowers the threshold for activation of immune cells in SAIDs, promoting oxidative stress with consequent loss of control of proinflammatory and anti-inflammatory cytokine production

  • Individual resistance to stress can explain the variable severity of the clinical manifestations in patients with SAIDs sharing the same mutation, and suggests that stress pathways could be a therapeutic target in these diseases

Abstract

Inflammation is initiated by innate immune cell activation after contact with pathogens or tissue injury. An increasing number of observations have suggested that cellular stress, in the absence of infection or evident damage, can also induce inflammation. Thus, inflammation can be triggered by exogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs)—so-called classic inflammation—or by endogenous stress resulting from tissue or cellular dysfunction. External triggers and cellular stress activate the same molecular pathways, possibly explaining why classic and stress-induced inflammation have similar clinical manifestations. In some systemic autoinflammatory diseases (SAIDs), inflammatory cells exhibit reduction–oxidation (redox) distress, having high levels of reactive oxygen species (ROS), which promote proinflammatory cytokine production and contribute to the subversion of mechanisms that self-limit inflammation. Thus, SAIDs can be viewed as a paradigm of stress-related inflammation, being characterized by recurrent flares or chronic inflammation (with no recognizable external triggers) and by a failure to downmodulate this inflammation. Here, we review SAID pathophysiology, focusing on the major cytokines and DAMPs, and on the key roles of redox distress. New therapeutic opportunities to tackle SAIDs by blocking stress-induced pathways and control the response to stress in patients are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower threshold of activation and inability to self-limit inflammation in SAID inflammatory cells.
Figure 2: Stress links gene defects and proinflammatory and anti-inflammatory cytokine dysregulation in SAIDs.
Figure 3: Treatment options to prevent self-perpetuating inflammatory loops in SAIDs.

Similar content being viewed by others

References

  1. French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat. Genet. 17, 25–31 (1997).

  2. McDermott, M. F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Martinon, F. & Aksentijevich, I. New players driving inflammation in monogenic autoinflammatory diseases. Nat. Rev. Rheumatol. 11, 11–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Gattorno, M. & Martini, A. Beyond the NLRP3 inflammasome: autoinflammatory diseases reach adolescence. Arthritis Rheum. 65, 1137–1147 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Rubartelli, A. Redox control of NLRP3 inflammasome activation in health and disease. J. Leukoc. Biol. 92, 951–958 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Rubartelli, A. Autoinflammatory diseases. Immunol. Lett. 16, 226–230 (2014).

    Article  CAS  Google Scholar 

  7. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Omenetti, A. et al. Increased NLRP3-dependent interleukin 1β secretion in patients with familial Mediterranean fever: correlation with MEFV genotype. Ann. Rheum. Dis. 73, 462–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. van der Burgh, R. et al. Defects in mitochondrial clearance predispose human monocytes to interleukin-1β hypersecretion. J. Biol. Chem. 289, 5000–5012 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Frosch, M. et al. The myeloid-related proteins 8 and 14 complex, a novel ligand of toll-like receptor 4, and interleukin-1β form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 883–891 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carta, S., Lavieri, R. & Rubartelli, A. Different members of the IL-1 family come out in different ways: DAMPs vs. cytokines? Front. Immunol. 4, 1–9 (2013).

    Article  CAS  Google Scholar 

  14. Arend, W. P., Malyak, M., Guthridge, C. J. & Gabay, C. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Dinarello, C. A. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N. Engl. J. Med. 343, 732–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Varga, G. et al. Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. J. Leukoc. Biol. 84, 644–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Varga, G. et al. Immune suppression via glucocorticoid-stimulated monocytes: a novel mechanism to cope with inflammation. J. Immunol. 193, 1090–1099 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Goldbach-Mansky, R. et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N. Engl. J. Med. 355, 581–592 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gattorno, M. et al. Pattern of interleukin-1β secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum. 56, 3138–3148 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lachmann, H. J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Hoffman, H. M. et al. Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 58, 2443–2452 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Aksentijevich, I. et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426–2437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carta, S. et al. Deficient production of IL-1 receptor antagonist and IL-6 coupled to oxidative stress in cryopyrin-associated periodic syndrome monocytes. Ann. Rheum. Dis. 71, 1577–1581 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Rubartelli, A., Cozzolino, F., Talio, M. & Sitia, R. A novel secretory pathway for interleukin-1β, a protein lacking a signal sequence. EMBO J. 9, 1503–1510 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Dinarello, C. et al. IL-1 family nomenclature. Nat. Immunol. 11, 973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Tassi, S. et al. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1β secretion. Proc. Natl Acad. Sci. USA 107, 9789–9794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carta, S. et al. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases resulting in cytokine imbalance. Proc. Natl Acad. Sci. USA 112, 2835–2840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Eigenbrod, T., Park, J. H., Harder, J., Iwakura, Y. & Núñez, G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1α released from dying cells. J. Immunol. 181, 8194–8198 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Mandinova, A. et al. S100A13 mediates the copper-dependent stress-induced release of IL-1α from both human U937 and murine NIH 3T3 cells. J. Cell Sci. 116, 2687–2696 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Keller, M., Rüegg, A., Werner, S. & Beer, H. D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Gross, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Rubartelli, A. & Lotze, M. T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28, 429–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Bianchi, M. E. HMGB1 loves company. J. Leukoc. Biol. 86, 573–576 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Mellins, E. D. Macaubas, C. & Grom, A. A. Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nat. Rev. Rheumatol. 7, 416–426 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kessel, C., Holzinger, D. & Foell, D. Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin. Immunol. 147, 229–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Li, G., Tang, D. & Lotze M. T. Ménage à trois in stress: DAMPs, redox and autophagy. Semin. Cancer Biol. 23, 380–390 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ghavami, S. et al. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 20, 314–331 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Hewinson, J., Moore, S. F. Glover, C. Watts, A. G. & MacKenzie, A. B. A key role for redox signaling in rapid P2X7 receptor-induced IL-1β processing in human monocytes. J. Immunol. 180, 8410–8420 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Cruz, C. M. et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 282, 2871–2879 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Foell, D., Wittkowski, H., Vogl, T. & Roth, J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 81, 28–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Bours, M. J., Swennen, E. L., Di Virgilio, F., Cronstein, B. N. & Dagnelie, P. C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112, 358–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Harris, H. E., Andersson, U. & Pisetsky, D. S. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat. Rev. Rheumatol. 8, 195–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Gardella S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3, 995–1001 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang, D. et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leuk. Biol. 81, 741–747 (2007).

    Article  CAS  Google Scholar 

  53. Yang, H. et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc. Natl Acad. Sci. USA 107, 12611–12616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Apetoh, L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Thorburn, J. et al. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. 16, 175–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Hori, O. et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270, 25752–25761 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Park, J. S. et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 290, C917–C924 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, H. et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl Acad. Sci. USA 107, 11942–11947 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, H. et al. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol. Med. 18, 250–259 (2012).

    Article  PubMed  CAS  Google Scholar 

  60. Schiraldi, M. et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med. 209, 551–563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Venereau, E. et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 209, 1519–1528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park, H. S. et al. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-κB. J. Immunol. 173, 3589–3593 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Taniguchi, N. et al. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum. 48, 971–981 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kokkola, R. et al. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 48, 2052–2058 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Hamada, T. et al. Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis. Arthritis Rheum. 58, 2675–2685 (2008).

    Article  PubMed  Google Scholar 

  66. Lundbäck, P. et al. Characterization of the inflammatory properties of actively released HMGB1 in juvenile idiopathic arthritis. Antioxid. Redox Signal. http://dx.doi.org/10.1089/ars.2014.6039.

  67. De Benedetti, F. et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2385–2395 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Willingham, S. B. et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2, 147–159 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nacken, W., Roth, J., Sorg, C. & Kerkhoff, C. S100A9/S100A8: myeloid representatives of the S100 protein family as prominent players in innate immunity. Microsc. Res. Tech. 60, 569–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Niki, I., Yokokura, H., Sudo, T., Kato, M. & Hidaka, H. Ca2+ signaling and intracellular Ca2+ binding proteins. J. Biochem. 120, 685–698 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Steinbakk, M. et al. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet 336, 763–765 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Vogl, T. et al. S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J. Biol. Chem. 274, 25291–25296 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Foell, D. et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am. J. Respir. Crit. Care Med. 187, 1324–1334 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Rammes, A. et al. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J. Biol. Chem. 272, 9496–9502 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Wittkowski, H. et al. S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 58, 3924–3931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kallinich, T., Wittkowski, H., Keitzer, R., Roth, J. & Foell, D. Neutrophil-derived S100A12 as novel biomarker of inflammation in familial Mediterranean fever. Ann. Rheum. Dis. 69, 677–682 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Foell, D. et al. Monitoring neutrophil activation in juvenile rheumatoid arthritis by S100A12 serum concentration. Arthritis Rheum. 50, 1286–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Lin, Y. T., Wang, C. T., Gershwin, M. E. & Chiang, B. L. The pathogenesis of oligoarticular/polyarticular vs systemic juvenile idiopathic arthritis. Autoimmun. Rev. 10, 482–489 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Wittkowski, H. et al. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Ann. Rheum. Dis. 70, 2075–2081 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Giuliani, F., Grieve, A. & Rabouille C. Unconventional secretion: a stress on GRASP. Curr. Opin. Cell. Biol. 23, 498–504 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Holzinger, D. The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann. Rheum. Dis. 71, 974–980 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Kolly, L. et al. Periodic fever, aphthous stomatitis pharyngitis, cervical adenitis syndrome is linked to dysregulated monocyte IL-1β production. J. Allergy Clin. Immunol. 131, 1635–1643 2013).

    Article  CAS  PubMed  Google Scholar 

  84. Gombault, A., Baron, L. & Couillin, I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front. Immunol. 3, 414 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lazarowski, E. R., Boucher, R. C. & Harden, T. K. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol. Pharmacol. 64, 785–795 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Praetorius, H. A. & Leipziger, J. ATP release from non-excitable cells. Purinergic Signal. 5, 433–446 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lavieri, R. et al. TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production. J. Immunol. 192, 5373–5381 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Antonioli, L., Pacher, P., Vizi, E. S. & Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 19, 355–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Piccini, A. et al. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1β and IL-18 secretion in an autocrine way. Proc. Natl Acad. Sci. USA 105, 8067–8072 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cannon, W. B. “Physiological regulation of normal states: some tentative postulates concerning biological homeostatics” in Jubilee Volume for Charles Richet 91–93 (Paris: Les Éditions Médicales, 1926).

    Google Scholar 

  92. Rubartelli, A. & Sitia, R. Stress as an intercellular signal: the emergence of stress-associated molecular patterns (SAMP). Antioxid. Redox. Signal. 11, 2621–2629 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Pal, R. et al. Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. Nat. Commun. 5, 4425 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Luciani, A. et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat. Cell Biol. 12, 863–875 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Tassi, S. et al. Pathogen-induced interleukin-1β processing and secretion is regulated by a biphasic redox response. J. Immunol. 183, 1456–1462 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Gloire, G., Legrand-Poels, S. & Piette, J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol. 72, 1493–1505 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Martinon, F. Signaling by ROS drives inflammasome activation. Eur. J. Immunol. 40, 616–619 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Harijith, A., Ebenezer, D. L. & Natarajan, V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front. Physiol. 5, 352 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Meissner, F., Molawi, K. & Zychlinsky, A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat. Immunol. 9, 866–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Zhao, C., Gillette, D. D., Li, X, Zhang, Z. & Wen, H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J. Biol. Chem. 289, 17020–17029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Borghini, S. et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 63, 830–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sundqvist, M. et al. Increased intracellular oxygen radical production in neutrophils during febrile episodes of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis syndrome. Arthritis Rheum. 65, 2971–2983 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Simon, A. et al. Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc. Natl Acad. Sci. USA 107, 9801–9806 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Silva, J. M., Wong, A., Carelli, V. & Cortopassi, G. A. Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol. Dis. 34, 357–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Grant, C. M. Regulation of translation by hydrogen peroxide. Antioxid. Redox Signal. 15, 191–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Crow, Y. J. Type I interferonopathies: mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32, 7–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Ahn, J. & Barber, G. N. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr. Opin. Immunol. 31, 121–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, Y. et al. Mutations in proteasome subunit β type 8 cause neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64, 895–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bennett, L. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Savva, A. & Roger, T. Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front. Immunol. 4, 387 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Cauwels, A., Rogge, E., Vandendriessche, B., Shiva, S. & Brouckaert, P. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell. Death Dis. 5, e1102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mehta, N. et al. Purinergic receptor P2X7: a novel target for anti-inflammatory therapy. Bioorg. Med. Chem. 22, 54–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Ramprasath, T. & Selvam, G. S. Potential impact of genetic variants in Nrf2 regulated antioxidant genes and risk prediction of diabetes and associated cardiac complications. Curr. Med. Chem. 20, 4680–4693 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Carta, S. et al. The rate of interleukin-1β secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. J. Biol. Chem. 286, 27069–27080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Janssens, S., Pulendran, B. & Lambrecht, B. N. Emerging functions of the unfolded protein response in immunity. Nat. Immunol. 15, 910–919 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Osorio, F., Lambrecht, B. & Janssens, S. The UPR and lung disease. Semin. Immunopathol. 35, 293–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Martinon, F., Chen, X., Lee, A.-H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Savic, S. et al. TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes. J. Autoimmun. 50, 59–66 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qiu, Q. et al. Toll-like receptor-mediated IRE1α activation as a therapeutic target for inflammatory arthritis. EMBO J. 32, 2477–2490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rubartelli, A., Gattorno, M., Netea, M. G. & Dinarello, C. A. Interplay between redox status and inflammasome activation. Trends Immunol. 32, 559–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. D'Antonio, M. et al. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. J. Exp. Med. 210, 821–838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ayala-Peña, S. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis. Free Radic. Biol. Med. 62, 102–110 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Lei, Y. et al. Redox regulation of inflammation: old elements, a new story. Med. Res. Rev. 35, 306–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Bachetti, T. et al. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann. Rheum. Dis. 72, 1044–1052 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Palmblad, K. et al. High systemic levels of the cytokine-inducing HMGB1 isoform secreted in severe macrophage activation syndrome. Mol. Med. 20, 538–547 (2014).

    Article  Google Scholar 

  132. Andersson, U. & Tracey, K. J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 29, 139–162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Steinckwich, N., Schenten, V., Melchior, C., Bréchard, S. & Tschirhart, E. J. An essential role of STIM1, Orai1, and S100A8-A9 proteins for Ca2+ signaling and FcγR-mediated phagosomal oxidative activity. J. Immunol. 186, 2182–2191 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Foell, D., Wittkowski, H. & Roth, J. Mechanisms of disease: a “DAMP” view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 3, 382–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Ferrari, D. et al. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. 176, 3877–3883 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported in part by the Italian Ministry of Health (M.G., A.R.), by Telethon, Italy (grant n. GGP14144; M.G., A.R.) and by Associazione Italiana per la Ricerca sul Cancro (grant n. IG15434; A.R.).

Author information

Authors and Affiliations

Authors

Contributions

G.V. and A.R. reviewed and edited the manuscript before submission. All authors researched data for the article, made substantial contributions to discussion of content and wrote the manuscript.

Corresponding author

Correspondence to Anna Rubartelli.

Ethics declarations

Competing interests

M.G. has received lecture fees and institutional unrestricted grants from SoBi and Novartis; D.F. has received lecture fees from Chugai, Novartis, Pfizer, Roche and SoBi; A.R. has received lecture fees from SoBi and Novartis; G.V. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, G., Gattorno, M., Foell, D. et al. Redox distress and genetic defects conspire in systemic autoinflammatory diseases. Nat Rev Rheumatol 11, 670–680 (2015). https://doi.org/10.1038/nrrheum.2015.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing