Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation and DNA damage: cause, effect or both

Abstract

Inflammation is a biological response involving immune cells, blood vessels and mediators induced by endogenous and exogenous stimuli, such as pathogens, damaged cells or chemicals. Unresolved (chronic) inflammation is characterized by the secretion of cytokines that maintain inflammation and redox stress. Mitochondrial or nuclear redox imbalance induces DNA damage, which triggers the DNA damage response (DDR) that is orchestrated by ATM and ATR kinases, which modify gene expression and metabolism and, eventually, establish the senescent phenotype. DDR-mediated senescence is induced by the signalling proteins p53, p16 and p21, which arrest the cell cycle in G1 or G2 and promote cytokine secretion, producing the senescence-associated secretory phenotype. Senescence and inflammation phenotypes are intimately associated, but highly heterogeneous because they vary according to the cell type that is involved. The vicious cycle of inflammation, DNA damage and DDR-mediated senescence, along with the constitutive activation of the immune system, is the core of an evolutionarily conserved circuitry, which arrests the cell cycle to reduce the accumulation of mutations generated by DNA replication during redox stress caused by infection or inflammation. Evidence suggests that specific organ dysfunctions in apparently unrelated diseases of autoimmune, rheumatic, degenerative and vascular origins are caused by inflammation resulting from DNA damage-induced senescence.

Key points

  • Persistent DNA damage of mitochondrial or nuclear DNA and the DNA damage response represent the common features of every type of inflammation, whether systemic or organ specific.

  • Senescence, characterized by permanent cell-cycle arrest and the secretion of inflammatory cytokines, is the main response to and consequence of DNA damage.

  • The heterogeneity of the organ or tissue inflammation and senescent phenotypes in response to DNA damage is the result of the concomitant presence of several cell-type-specific phenotypes in mitotic and postmitotic cells.

  • Persistent DNA damage maintained by senescence induces loss or change of epigenetic memory (DNA methylation and chromatin configuration), leading to reactivation of silenced genes, and further diffuse inflammation and DNA damage response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main actors linking DNA damage to inflammation.
Fig. 2: DNA damage and DNA damage response reprogramme energy metabolism.
Fig. 3: cGAS–STING signalling and DNA damage repair.
Fig. 4: Positive feedback between inflammation and persistent DNA damage in senescence.

Similar content being viewed by others

References

  1. Payandeh, Z., Pirpour Tazehkand, A., Azargoonjahromi, A., Almasi, F. & Alagheband Bahrami, A. The role of cell organelles in rheumatoid arthritis with focus on exosomes. Biol. Proced. Online 23, 20 (2021).

    Article  Google Scholar 

  2. Yao, R. Q., Ren, C., Xia, Z. F. & Yao, Y. M. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy 17, 385–401 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Russo, S., Kwiatkowski, M., Govorukhina, N., Bischoff, R. & Melgert, B. N. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: the importance of metabolites. Front. Immunol. 12, 746151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nastasi, C., Mannarino, L. & D’Incalci, M. DNA damage response and immune defense. Int. J. Mol. Sci. 21, 7504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alfano, M. et al. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nat. Commun. 12, 5205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Higo, T. et al. DNA single-strand break-induced DNA damage response causes heart failure. Nat. Commun. 8, 15104 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, J.-Y. et al. Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc. Natl Acad. Sci. USA 116, 2603–2611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yosef, R. et al. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J. 36, 2280–2295 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feringa, F. M. et al. Persistent repair intermediates induce senescence. Nat. Commun. 9, 3923 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gire, V. & Dulić, V. Senescence from G2 arrest, revisited. Cell Cycle 14, 297–304 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Terzi, M. Y., Izmirli, M. & Gogebakan, B. The cell fate: senescence or quiescence. Mol. Biol. Rep. 43, 1213–1220 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Shaukat, Z., Liu, D. & Gregory, S. Sterile inflammation in Drosophila. Mediators Inflamm. 2015, 369286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Burton, D. G. A. & Faragher, R. G. A. Cellular senescence: from growth arrest to immunogenic conversion. Age 37, 27 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ditch, S. & Paull, T. T. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochemical Sci. 37, 15–22 (2012).

    Article  CAS  Google Scholar 

  18. Stokes, M. P. et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl Acad. Sci. USA 104, 19855–19860 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sobanski, T. et al. Cell metabolism and DNA repair pathways: implications for cancer therapy. Front. Cell Dev. Biol. 9, 633305 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Turgeon, M.-O., Perry, N. J. S. & Poulogiannis, G. DNA damage, repair, and cancer metabolism. Front. Oncol. 8, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hamsanathan, S. et al. Integrated -omics approach reveals persistent DNA damage rewires lipid metabolism and histone hyperacetylation via MYS-1/Tip60. Sci. Adv. 8, eabl6083 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foley, J. F. ATM and inflammation. Sci. Signal. 2, ec265 (2009).

    Google Scholar 

  24. Fumagalli, M. & d’Adda di Fagagna, F. SASPense and DDRama in cancer and ageing. Nat. Cell Biol. 11, 921–923 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Meng, J., Liu, X. & Cao, X. A new cytosolic DNA-recognition pathway for DNA-induced inflammatory responses. Cell. Mol. Immunol. 11, 506–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gavin, A. L. et al. Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nat. Commun. 12, 5874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Okude, H., Ori, D. & Kawai, T. Signaling through nucleic acid sensors and their roles in inflammatory diseases. Front. Immunol. 11, 625833 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Russo, G. et al. DNA damage and repair modify DNA methylation and chromatin domain of the targeted locus: mechanism of allele methylation polymorphism. Sci. Rep. 6, 33222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pezone, A. et al. High-coverage methylation data of a gene model before and after DNA damage and homologous repair. Sci. Data 4, 170043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Allen, B., Pezone, A., Porcellini, A., Muller, M. T. & Masternak, M. M. Non-homologous end joining induced alterations in DNA methylation: a source of permanent epigenetic change. Oncotarget 8, 40359–40372 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sutton, L. P. et al. DNA methylation changes following DNA damage in prostate cancer cells. Epigenetics 14, 989–1002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).

  35. Bettencourt, I. A. & Powell, J. D. Targeting metabolism as a novel therapeutic approach to autoimmunity, inflammation, and transplantation. J. Immunol. 198, 999–1005 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Ferrara, A. L., Liotti, A., Pezone, A. & De Rosa, V. Therapeutic opportunities to modulate immune tolerance through the metabolism-chromatin axis. Trends Endocrinol. Metab. 33, 507–521 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Volman, Y., Hefetz, R., Galun, E. & Rachmilewitz, J. DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci. Rep. 12, 5760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lanz, M. C., Dibitetto, D. & Smolka, M. B. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J. 38, e101801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kargapolova, Y. et al. Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nat. Commun. 12, 3014 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ruiz-Losada, M. et al. Coordination between cell proliferation and apoptosis after DNA damage in Drosophila. Cell Death Differ. 29, 832–845 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. De Zio, D., Cianfanelli, V. & Cecconi, F. New insights into the link between DNA damage and apoptosis. Antioxid. Redox Signal. 19, 559–571 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Medzhitov, R. The spectrum of inflammatory responses. Science 374, 1070–1075 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. von Zglinicki, T., Wan, T. & Miwa, S. Senescence in post-mitotic cells: a driver of aging? Antioxid. Redox Signal. 34, 308–323 (2021).

    Article  Google Scholar 

  45. Kumari, R. & Jat, P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 9, 645593 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ortega, P., Gómez-González, B. & Aguilera, A. Heterogeneity of DNA damage incidence and repair in different chromatin contexts. DNA Repair 107, 103210 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    Article  PubMed  Google Scholar 

  48. Doksani. The response to DNA damage at telomeric repeats and its consequences for telomere function. Genes 10, 318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cao, D. et al. Disruption of telomere integrity and DNA repair machineries by KML001 induces T cell senescence, apoptosis, and cellular dysfunctions. Front. Immunol. 10, 1152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  52. Bernadotte, A., Mikhelson, V. M. & Spivak, I. M. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging 8, 3–11 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ghadaouia, S. et al. Homologous recombination-mediated irreversible genome damage underlies telomere-induced senescence. Nucleic Acids Res. 49, 11690–11707 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rufini, A., Tucci, P., Celardo, I. & Melino, G. Senescence and aging: the critical roles of p53. Oncogene 32, 5129–5143 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Qian, Y. & Chen, X. Senescence regulation by the p53 protein family. Methods Mol. Biol. 2013, 37–61 (2013).

    Article  Google Scholar 

  56. Zhao, Y. et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138, 463–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, B., Kohli, J. & Demaria, M. Senescent cells in cancer therapy: friends or foes? Trends Cancer 6, 838–857 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Cao, Y. et al. N-Acetyltransferase 10 promotes micronuclei formation to activate the senescence-associated secretory phenotype machinery in colorectal cancer cells. Transl. Oncol. 13, 100783 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Suzuki, K., Kawamura, K., Ujiie, R., Nakayama, T. & Mitsutake, N. Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 876–877 (2022).

    Google Scholar 

  61. Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  PubMed  Google Scholar 

  63. Cipriano, R. et al. TGF-β signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc. Natl Acad. Sci. USA 108, 8668–8673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pezone, A. Targeted DNA oxidation by LSD1–SMAD2/3 primes TGF-β1/ EMT genes for activation or repression. Nucleic Acids Res. 48, 8943–8958 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, Q. et al. TGF-β upregulated mitochondria mass through the SMAD2/3→C/EBPβ→PRMT1 signal pathway in primary human lung fibroblasts. J. Immunol. 202, 37–47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Das, P. et al. Drosophila dSmad2 and Atr-I transmit activin/TGFβ signals. Genes Cells 4, 123–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Da Silva-Álvarez, S. et al. The development of cell senescence. Exp. Gerontol. 128, 110742 (2019).

    Article  PubMed  Google Scholar 

  68. Reyes, N. S. et al. Sentinel p16INK4a+ cells in the basement membrane form a reparative niche in the lung. Science 378, 192–201 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Svegliati, S. et al. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci. Signal. 7, ra84 (2014).

    Article  PubMed  Google Scholar 

  72. Kandhaya-Pillai, R. et al. TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging 9, 2411–2435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hubackova, S. et al. IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 35, 1236–1249 (2015).

    Article  PubMed  Google Scholar 

  74. Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 5, 4172 (2014).

    Article  CAS  Google Scholar 

  75. Braumüller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    Article  PubMed  Google Scholar 

  76. Kim, K. S., Kang, K. W., Seu, Y. B., Baek, S.-H. & Kim, J.-R. Interferon-γ induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells. Mech. Ageing Dev. 130, 179–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Kay, J., Thadhani, E., Samson, L. & Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 83, 102673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barash, H. et al. Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks. Proc. Natl Acad. Sci. USA 107, 2207–2212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 132, e158447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wiley, C. D. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Kujoth, G. C. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Lu, M. et al. Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia. J. Theor. Biol. 254, 466–475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Houtkooper, R. H., Williams, R. W. & Auwerx, J. Metabolic networks of longevity. Cell 142, 9–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Braidy, N. et al. Age related changes in NAD+ metabolism oxidative stress and sirt1 activity in Wistar rats. PLoS ONE 6, e19194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoshino, J., Kathryn, F. M., Yoon, M. & Imai, S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nat. Metab. 2, 1284–1304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shi, B. et al. Targeting CD38-dependent NAD+ metabolism to mitigate multiple organ fibrosis. iScience 24, 101902 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, J. et al. Exogenous NAD+ postpones the D-Gal-induced senescence of bone marrow-derived mesenchymal stem cells via Sirt1 signaling. Antioxidants 10, 254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Guarente, L. Sirtuins and calorie restriction. Nat. Rev. Mol. Cell Biol. 13, 207–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Browning, J. D., Baxter, J., Satapati, S. & Burgess, S. C. The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men. J. Lipid Res. 53, 577–586 (2011).

    Article  PubMed  Google Scholar 

  95. Duan, Y. et al. Inflammatory links between high fat diets and diseases. Front. Immunol. 9, 2649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vergoni, B. et al. DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes. Diabetes 65, 3062–3074 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Masschelin, P. M., Cox, A. R., Chernis, N. & Hartig, S. M. The impact of oxidative stress on adipose tissue energy balance. Front. Physiol. 10, 1638 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Takagi, M. et al. ATM regulates adipocyte differentiation and contributes to glucose homeostasis. Cell Rep. 10, 957–967 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Lee, G. et al. SREBP1c-PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab. 34, 702–718.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, M. S., Lee, R. T. & Garbern, J. C. Senescence mechanisms and targets in the heart. Cardiovasc. Res. 118, 1173–1187 (2021).

    Article  PubMed Central  Google Scholar 

  101. Wu, W. et al. Neuronal enhancers are hotspots for DNA single-strand break repair. Nature 593, 440–444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lillenes, M. S. et al. Transient OGG1, APE1, PARP1 and Polβ expression in an Alzheimer’s disease mouse model. Mech. Ageing Dev. 134, 467–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. López-Moyado, I. F. & Rao, A. Active DNA demethylation damages DNA. Science 378, 948–949 (2022).

    Article  PubMed  Google Scholar 

  104. Sattler, U., Frit, P., Salles, B. & Calsou, P. Long-patch DNA repair synthesis during base excision repair in mammalian cells. EMBO Rep. 4, 363–367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fielder, E., von Zglinicki, T. & Jurk, D. The DNA damage response in neurons: die by apoptosis or survive in a senescence-like state? J. Alzheimers Dis. 60, S107–S131 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Martínez-Cué, C. & Rueda, N. Cellular senescence in neurodegenerative diseases. Front. Cell. Neurosci. 14, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Song, X., Theeng Mei, A. W., Ma, F., Leung, D. & Herrup, K. DNA damage induced neuroinflammation in neurodegenerative disease. Alzheimers Dement. 16, e047445 (2020).

    Article  Google Scholar 

  109. Shih, R.-H., Wang, C.-Y. & Yang, C.-M. NF-κB signaling pathways in neurological inflammation: a mini review. Front. Mol. Neurosci. 8, 77 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wareham, L. K. et al. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol. Neurodegener. 17, 23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kok, J. R., Palminha, N. M., Dos Santos Souza, C., El-Khamisy, S. F. & Ferraiuolo, L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell. Mol. Life Sci. 78, 5707–5729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Giordano, A. M. S. et al. DNA damage contributes to neurotoxic inflammation in Aicardi-Goutières syndrome astrocytes. J. Exp. Med. 219, e20211121 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Desdín-Micó, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371–1376 (2020).

    Article  PubMed  Google Scholar 

  114. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Campbell, R. A., Docherty, M.-H., Ferenbach, D. A. & Mylonas, K. J. The role of ageing and parenchymal senescence on macrophage function and fibrosis. Front. Immunol. 12, 700790 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Franceschi, C. et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2006).

    Article  Google Scholar 

  117. Matacchione, G. et al. Senescent macrophages in the human adipose tissue as a source of inflammaging. Geroscience 44, 1941–1960 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Salminen, A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res. Rev. 67, 101280 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Weinreb, J. T. et al. Excessive R-loops trigger an inflammatory cascade leading to increased HSPC production. Dev. Cell 56, 627–640.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pezone, A. et al. RNA stabilizes transcription-dependent chromatin loops induced by nuclear hormones. Sci. Rep. 9, 3925 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mankan, A. K. et al. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J. 33, 2937–2946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Fang, C. et al. Oxidized mitochondrial DNA sensing by STING signaling promotes the antitumor effect of an irradiated immunogenic cancer cell vaccine. Cell. Mol. Immunol. 18, 2211–2223 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Freund, A., Laberge, R.-M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tran, J. R., Chen, H., Zheng, X. & Zheng, Y. Lamin in inflammation and aging. Curr. Opin. Cell Biol. 40, 124–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yan, N. Immune diseases associated with TREX1 and STING dysfunction. J. Interferon Cytokine Res. 37, 198–206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wong, W. Leaky nuclei lead to senescence. Sci. Signal. 10, eaap9030 (2017).

    Article  Google Scholar 

  129. Kristiani, L., Kim, M. & Kim, Y. Role of the nuclear lamina in age-associated nuclear reorganization and inflammation. Cells 9, 718 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kwon, M., Leibowitz, M. L. & Lee, J.-H. Small but mighty: the causes and consequences of micronucleus rupture. Exp. Mol. Med. 52, 1777–1786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kato, H., Oh, S.-W. & Fujita, T. RIG-I-like receptors and type I interferonopathies. J. Interferon Cytokine Res. 37, 207–213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chou, W.-C. et al. AIM2 in regulatory T cells restrains autoimmune diseases. Nature 591, 300–305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhu, H. et al. The complex role of AIM2 in autoimmune diseases and cancers. Immun. Inflamm. Dis. 9, 649–665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Man, S. M., Karki, R. & Kanneganti, T.-D. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur. J. Immunol. 46, 269–280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354, 765–768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lammert, C. R. et al. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580, 647–652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yu, L. & Liu, P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal. Transduct. Target. Ther. 6, 170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Banerjee, D. et al. A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat. Commun. 12, 6207 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Shiromoto, Y., Sakurai, M., Minakuchi, M., Ariyoshi, K. & Nishikura, K. ADAR1 RNA editing enzyme regulates R-loop formation and genome stability at telomeres in cancer cells. Nat. Commun. 12, 1654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Riley, J. S. & Tait, S. W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 21, e49799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Foley, J. F. STING and arthritis. Sci. Signal. 14, eabn7607 (2021).

    Article  PubMed  Google Scholar 

  145. Demir, S., Sag, E., Dedeoglu, F. & Ozen, S. Vasculitis in systemic autoinflammatory diseases. Front. Pediatr. 6, 377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gray, E. E., Treuting, P. M., Woodward, J. J. & Stetson, D. B. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi–Goutières Syndrome. J. Immunol. 195, 1939–1943 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Vincent, J. et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat. Commun. 8, 750 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Motwani, M. et al. cGAS-STING pathway does not promote autoimmunity in murine models of SLE. Front. Immunol. 12, 605930 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pelka, K. et al. The chaperone UNC93B1 regulates Toll-like receptor stability independently of endosomal TLR transport. Immunity 48, 911–922.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. He, Z., Ye, S., Xing, Y., Jiu, Y. & Zhong, J. UNC93B1 curbs cytosolic DNA signaling by promoting STING degradation. Eur. J. Immunol. 51, 1672–1685 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Zhu, H., Zhang, R., Yi, L., Tang, Y. & Zheng, C. UNC93B1 attenuates the cGAS–STING signaling pathway by targeting STING for autophagy–lysosome degradation. J. Med. Virol. 94, 4490–4501 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Papinska, J., Bagavant, H., Gmyrek, G. B. & Deshmukh, U. S. Pulmonary involvement in a mouse model of Sjögren’s syndrome induced by STING activation. Int. J. Mol. Sci. 21, 4512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Svegliati, S. et al. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. J. Biol. Chem. 280, 36474–36482 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Majone, F. et al. Unstabilized DNA breaks in lymphocytes of patients with different subsets of systemic sclerosis. Ann. NY Acad. Sci. 1108, 240–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Patterson, K. A., Walker, J. G., Roberts-Thomson, P. J., Bull, C. F. & Fenech, M. Evidence of chromosomal damage in scleroderma. Pathology 54, 131–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Truchetet, M. E., Brembilla, N. C. & Chizzolini, C. Current concepts on the pathogenesis of systemic sclerosis. Clin. Rev. Allergy Immunol. https://doi.org/10.1007/s12016-021-08889-8 (2021).

    Article  PubMed  Google Scholar 

  157. Caldecott, K. W., Ward, M. E. & Nussenzweig, A. The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nat. Genet. 54, 115–120 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Thapa, K., Khan, H., Sharma, U., Grewal, A. K. & Singh, T. G. Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci. 267, 118975 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Mao, K. & Zhang, G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J. 289, 2013–2024 (2021).

    Article  PubMed  Google Scholar 

  160. Reid, D. A. et al. Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons. Science 372, 91–94 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wu, J., McKeague, M. & Sturla, S. J. Nucleotide-resolution genome-wide mapping of oxidative DNA damage by Click-Code-Seq. J. Am. Chem. Soc. 140, 9783–9787 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Bal, E. et al. Super-enhancer hypermutation alters oncogene expression in B cell lymphoma. Nature 607, 808–815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2013).

    Article  Google Scholar 

  164. Mackenzie, K. J. et al. Ribonuclease H2 mutations induce a cGAS/STING‐dependent innate immune response. EMBO J. 35, 831–844 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Aditi et al. Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair. Neuron 109, 3962–3979.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chinta, S. J. et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep. 22, 930–940 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ogrodnik, M. et al. Whole‐body senescent cell clearance alleviates age‐related brain inflammation and cognitive impairment in mice. Aging Cell 20, e13296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Welch, G. & Tsai, L. Mechanisms of DNA damage‐mediated neurotoxicity in neurodegenerative disease. EMBO Rep. 23, e54217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cussiol, J. R. R., Soares, B. L. & de. Oliveira, F. M. B. From yeast to humans: understanding the biology of DNA Damage Response (DDR) kinases. Genet. Mol. Biol. 43, e20190071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Lee, J.-H. & Paull, T. T. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol. 32, 101511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rodrigues, D., Renaud, Y., VijayRaghavan, K., Waltzer, L. & Inamdar, M. S. Differential activation of JAK-STAT signaling reveals functional compartmentalization in Drosophila blood progenitors. eLife 10, e61409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2013).

    Article  Google Scholar 

  175. Venkatachalam, G., Surana, U. & Clément, M.-V. Replication stress-induced endogenous DNA damage drives cellular senescence induced by a sub-lethal oxidative stress. Nucleic Acids Res. 45, 10564–10582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tijhuis, A. E., Johnson, S. C. & McClelland, S. E. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol. Cytogenet. 12, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cuozzo, C. et al. DNA damage, homology-directed repair, and DNA methylation. PLoS Genet. 3, e110 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Morano, A. et al. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene. Nucleic Acids Res. 42, 804–821 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Mira-Bontenbal, H. et al. Genetic and epigenetic determinants of reactivation of Mecp2 and the inactive X chromosome in neural stem cells. Stem Cell Rep. 17, 693–706 (2022).

    Article  CAS  Google Scholar 

  180. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Schuettengruber, B., Bourbon, H.-M., Di Croce, L. & Cavalli, G. Genome regulation by Polycomb and Trithorax: 70 years and counting. Cell 171, 34–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Healton, S. E. et al. H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proc. Natl Acad. Sci. USA 117, 14251–14258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal. Transduct. Target. Ther. 4, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. O’Hagan, H. M., Mohammad, H. P. & Baylin, S. B. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 4, e1000155 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Sandovici, I. et al. Human imprinted chromosomal regions are historical hot-spots of recombination. PLoS Genet. 2, e101 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Xiao, F.-H., Wang, H.-T. & Kong, Q.-P. Dynamic DNA methylation during aging: a ‘prophet’ of age-related outcomes. Front. Genet. 10, 107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lemay, S.-E. et al. Fetal gene reactivation in pulmonary arterial hypertension: GOOD, BAD, or BOTH? Cells 10, 1473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. El Azzouzi, H., Leptidis, S., Doevendans, P. A. & De Windt, L. J. HypoxamiRs: regulators of cardiac hypoxia and energy metabolism. Trends Endocrinol. Metab. 26, 502–508 (2015).

    Article  Google Scholar 

  189. Lu, J. Y. et al. Genomic repeats categorize genes with distinct functions for orchestrated regulation. Cell Rep. 30, 3296–3311.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lynch, V. J. et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. He, J. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pappalardo, X. G. & Barra, V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 14, 25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Saleh, A., Macia, A. & Muotri, A. R. Transposable elements, inflammation, and neurological disease. Front. Neurol. 10, 894 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Guo, C. et al. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 23, 2874–2880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Savva, Y. A. et al. RNA editing regulates transposon-mediated heterochromatic gene silencing. Nat. Commun. 4, 2745 (2013).

    Article  PubMed  Google Scholar 

  198. Krestel, H. & Meier, J. C. RNA editing and retrotransposons in neurology. Front. Mol. Neurosci. 11, 163 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Shive, C. & Pandiyan, P. Inflammation, immune senescence, and dysregulated immune regulation in the elderly. Front. Aging 3, 840827 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Manolakou, T. et al. ATR-mediated DNA damage responses underlie aberrant B cell activity in systemic lupus erythematosus. Sci. Adv. 8, eabo5840 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Galita, G. et al. Increased sensitivity of PBMCs isolated from patients with rheumatoid arthritis to DNA damaging agents is connected with inefficient DNA repair. J. Clin. Med. 9, 988 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Li, Y. et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 30, 477–492.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Martelli-Palomino, G. et al. DNA damage increase in peripheral neutrophils from patients with rheumatoid arthritis is associated with the disease activity and the presence of shared epitope. Clin. Exp. Rheumatol. 35, 247–254 (2017).

    PubMed  Google Scholar 

  204. McNally, J. P. et al. Manipulating DNA damage-response signaling for the treatment of immune-mediated diseases. Proc. Natl Acad. Sci. USA 114, E4782–E4791 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Dillon, M. T. et al. ATR inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin. Cancer Res. 25, 3392–3403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Golder, A. et al. Multiple-low-dose therapy: effective killing of high-grade serous ovarian cancer cells with ATR and CHK1 inhibitors. NAR Cancer 4, zcac036 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A. Pezone is supported by the PON R&I 2014-2020 [E65F21002850007], E.V.A. is supported by the POR Campania FESR 2014-2020 “SATIN” grant, and A.G. is supported by Fondazione di Medicina Molecolare e Terapia Cellulare (Ancona-Italy).

Author information

Authors and Affiliations

Authors

Contributions

M.V.N. researched data for the article. A. Pezone, F.O., A. Procopio, E.V.A. and A.G. contributed substantially to discussion of the content. A. Pezone, M.V.N., A. Procopio, E.V.A. and A.G. wrote the article. M.V.N. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Antonio Pezone, Enrico Vittorio Avvedimento or Armando Gabrielli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Marie-Elise Truchetet and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endocrinosenescence

Endocrine dysfunction that occurs with age.

Epigenetic modification

Heritable chemical or physical change in chromatin that is not a change in DNA sequence.

Immunosenescence

Immune dysfunction that occurs with age.

Meta-inflammation

A chronic state of inflammation mediated by macrophages located within the colon, liver, muscle and adipose tissue.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezone, A., Olivieri, F., Napoli, M.V. et al. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 19, 200–211 (2023). https://doi.org/10.1038/s41584-022-00905-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00905-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing