Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases

Abstract

Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype–phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.

Key points

  • Mendelian-inherited pathogenic variants in a given gene can have different inheritance patterns and can cause distinct and sometimes opposing clinical phenotypes.

  • Pathogenic variants in the same gene can have variable disease expressivity depending on their effect on protein function.

  • Pathogenic variants in different genes can result in a similar phenotype by virtue of converging on the same signalling pathway (as exemplified by the spectrum of phenotypes denoted as familial cold autoinflammatory syndromes (FCAS).

  • A growing number of autoinflammatory diseases can be explained by non-Mendelian inheritance of somatic variants.

  • Although systemic inflammation and fevers are common features of autoinflammatory diseases, specific organ manifestations are determined by the tissue expression of mutated proteins.

  • Other genetic alleles and risk factors, such as infections and stress, also contribute to the phenotypic variability of autoinflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammasome-mediated autoinflammatory disorders.
Fig. 2: Disease-causing variants of pyrin-associated autoinflammatory diseases.
Fig. 3: Disease-causing variants of NOD-like receptor-associated diseases.
Fig. 4: Pathogenesis of inflammatory actinopathies.
Fig. 5: Interferonopathies and disease-causing variants.
Fig. 6: Genotype–phenotype correlations in autoinflammatory diseases associated with enzyme deficiencies.

Similar content being viewed by others

References

  1. Manthiram, K., Zhou, Q., Aksentijevich, I. & Kastner, D. L. Corrigendum: the monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat. Immunol. 18, 1271 (2017).

    CAS  PubMed  Google Scholar 

  2. Savic, S., Caseley, E. A. & McDermott, M. F. Moving towards a systems-based classification of innate immune-mediated diseases. Nat. Rev. Rheumatol. 16, 222–237 (2020).

    PubMed  Google Scholar 

  3. Beck, D. B. & Aksentijevich, I. Biochemistry of autoinflammatory diseases: catalyzing monogenic disease. Front. Immunol. 10, 101 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  5. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590–1604 (2007).

    CAS  PubMed  Google Scholar 

  6. Feng, S., Fox, D. & Man, S. M. Mechanisms of gasdermin family members in inflammasome signaling and cell death. J. Mol. Biol. 430 (18 Pt B), 3068–3080 (2018).

    CAS  PubMed  Google Scholar 

  7. Xu, H. et al. Innate immune sensing of bacterial modifications of rho GTPases by the pyrin inflammasome. Nature 513, 237–241 (2014).

    CAS  PubMed  Google Scholar 

  8. Prudnikova, T. Y., Rawat, S. J. & Chernoff, J. Molecular pathways: targeting the kinase effectors of RHO-family GTPases. Clin. Cancer Res. 21, 24–29 (2015).

    CAS  PubMed  Google Scholar 

  9. Gao, W., Yang, J., Liu, W., Wang, Y. & Shao, F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc. Natl Acad. Sci. USA 113, E4857–E4866 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tidow, N. et al. Hematopoietic-specific expression of MEFV, the gene mutated in familial Mediterranean fever, and subcellular localization of its corresponding protein, pyrin. Blood 95, 1451–1455 (2000).

    CAS  PubMed  Google Scholar 

  12. Schnappauf, O., Chae, J. J., Kastner, D. L. & Aksentijevich, I. The pyrin inflammasome in health and disease. Front. Immunol. 10, 1745 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozdogan, H. & Ugurlu, S. Familial Mediterranean fever. Presse Med. 48, e61–e76 (2019).

    PubMed  Google Scholar 

  14. Maggio, M. C. & Corsello, G. FMF is not always "fever": from clinical presentation to "treat to target". Ital. J. Pediatr. 46, 7 (2020).

    PubMed  PubMed Central  Google Scholar 

  15. Weinert, C., Grutter, C., Roschitzki-Voser, H., Mittl, P. R. & Grutter, M. G. The crystal structure of human pyrin b30.2 domain: implications for mutations associated with familial Mediterranean fever. J. Mol. Biol. 394, 226–236 (2009).

    CAS  PubMed  Google Scholar 

  16. Grossman, C., Kassel, Y., Livneh, A. & Ben-Zvi, I. Familial Mediterranean fever (FMF) phenotype in patients homozygous to the MEFV M694V mutation. Eur. J. Med. Genet. 62, 103532 (2019).

    PubMed  Google Scholar 

  17. Stoler, I. et al. Gene-dose effect of MEFV gain-of-function mutations determines ex vivo neutrophil activation in familial Mediterranean fever. Front. Immunol. 11, 716 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kone-Paut, I. et al. The clinical spectrum of 94 patients carrying a single mutated MEFV allele. Rheumatology 48, 840–842 (2009).

    CAS  PubMed  Google Scholar 

  19. Lachmann, H. J. et al. Clinical and subclinical inflammation in patients with familial Mediterranean fever and in heterozygous carriers of MEFV mutations. Rheumatology 45, 746–750 (2006).

    CAS  PubMed  Google Scholar 

  20. Jamilloux, Y. et al. Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome. Rheumatology 57, 100–111 (2018).

    CAS  PubMed  Google Scholar 

  21. Koshy, R., Sivadas, A. & Scaria, V. Genetic epidemiology of familial Mediterranean fever through integrative analysis of whole genome and exome sequences from Middle East and North Africa. Clin. Genet. 93, 92–102 (2018).

    CAS  PubMed  Google Scholar 

  22. Park, Y. H. et al. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat. Immunol. 21, 857–867 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Booth, D. R. et al. The genetic basis of autosomal dominant familial Mediterranean fever. QJM 93, 217–221 (2000).

    CAS  PubMed  Google Scholar 

  24. Rowczenio, D. M. et al. Autosomal dominant familial Mediterranean fever in Northern European Caucasians associated with deletion of p.M694 residue — a case series and genetic exploration. Rheumatology 56, 209–213 (2017).

    CAS  PubMed  Google Scholar 

  25. Papa, R. et al. A web-based collection of genotype-phenotype associations in hereditary recurrent fevers from the Eurofever registry. Orphanet J. Rare Dis. 12, 167 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Masters, S. L. et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci. Transl. Med. 8, 332ra345 (2016).

    Google Scholar 

  27. Moghaddas, F. et al. A novel Pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever. Ann. Rheum. Dis. 76, 2085–2094 (2017).

    CAS  PubMed  Google Scholar 

  28. Jeru, I. et al. Interaction of pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum. 52, 1848–1857 (2005).

    CAS  PubMed  Google Scholar 

  29. Hong, Y. et al. Autoinflammation due to homozygous S208 MEFV mutation. Ann. Rheum. Dis. 78, 571–573 (2019).

    CAS  PubMed  Google Scholar 

  30. Aldea, A. et al. A severe autosomal-dominant periodic inflammatory disorder with renal AA amyloidosis and colchicine resistance associated to the MEFV H478Y variant in a Spanish kindred: an unusual familial Mediterranean fever phenotype or another MEFV-associated periodic inflammatory disorder? Am. J. Med. Genet. A 124, 67–73 (2004).

    Google Scholar 

  31. Stoffels, M. et al. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease. Ann. Rheum. Dis. 73, 455–461 (2014).

    CAS  PubMed  Google Scholar 

  32. Rowczenio, D. M. et al. British kindred with dominant FMF associated with high incidence of AA amyloidosis caused by novel MEFV variant, and a review of the literature. Rheumatology 59, 554–558 (2020).

    CAS  PubMed  Google Scholar 

  33. Honda, Y. et al. Rapid flow cytometry-based assay for the functional classification of MEFV variants. J. Clin. Immunol. https://doi.org/10.1007/s10875-021-01021-7 (2021).

    Article  PubMed  Google Scholar 

  34. Van Gorp, H. et al. Blood-based test for diagnosis and functional subtyping of familial Mediterranean fever. Ann. Rheum. Dis. 79, 960–968 (2020).

    PubMed  Google Scholar 

  35. Gattorno, M. et al. Differentiating PFAPA syndrome from monogenic periodic fevers. Pediatrics 124, e721–e728 (2009).

    PubMed  Google Scholar 

  36. Taniuchi, S. et al. MEFV variants in patients with PFAPA syndrome in Japan. Open Rheumatol. J. 7, 22–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. De Benedetti, F. et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N. Engl. J. Med. 378, 1908–1919 (2018).

    PubMed  Google Scholar 

  38. Badour, K. et al. Fyn and PTP-PEST-mediated regulation of Wiskott-Aldrich syndrome protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J. Exp. Med. 199, 99–112 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Thrasher, A. J. & Burns, S. O. WASP: a key immunological multitasker. Nat. Rev. Immunol. 10, 182–192 (2010).

    CAS  PubMed  Google Scholar 

  40. Yu, J. W. et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell 28, 214–227 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Demidowich, A. P. et al. Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). Arthritis Rheum. 64, 2022–2027 (2012).

    PubMed  Google Scholar 

  42. Wise, C. A. et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum. Mol. Genet. 11, 961–969 (2002).

    CAS  PubMed  Google Scholar 

  43. Toplak, N. et al. An International registry on Autoinflammatory diseases: the Eurofever experience. Ann. Rheum. Dis. 71, 1177–1182 (2012).

    PubMed  Google Scholar 

  44. Fathalla, B. M., Al-Wahadneh, A. M., Al-Mutawa, M., Kambouris, M. & El-Shanti, H. A novel de novo PSTPIP1 mutation in a boy with pyogenic arthritis, pyoderma gangrenosum, acne (PAPA) syndrome. Clin. Exp. Rheumatol. 32, 956–958 (2014).

    PubMed  Google Scholar 

  45. Holzinger, D. et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J. Allergy Clin. Immunol. 136, 1337–1345 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Holzinger, D. & Roth, J. Alarming consequences – autoinflammatory disease spectrum due to mutations in proline-serine-threonine phosphatase-interacting protein 1. Curr. Opin. Rheumatol. 28, 550–559 (2016).

    CAS  PubMed  Google Scholar 

  47. Dai, P. et al. Autoinflammation masquerading as autoimmunity in an adult with heterozygous p.E250K PSTPIP1 mutation. J. Clin. Immunol. 39, 519–522 (2019).

    PubMed  Google Scholar 

  48. Belelli, E. et al. Haematological involvement associated with a mild autoinflammatory phenotype, in two patients carrying the E250K mutation of PSTPIP1. Clin. Exp. Rheumatol. 35, 113–115 (2017).

    PubMed  Google Scholar 

  49. Mistry, P. et al. Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome. Ann. Rheum. Dis. 77, 1825–1833 (2018).

    CAS  PubMed  Google Scholar 

  50. Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Janssen, W. J. M. et al. Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1) controls immune synapse stability in human T cells. J. Allergy Clin. Immunol. 142, 1947–1955 (2018).

    CAS  PubMed  Google Scholar 

  52. Starnes, T. W. et al. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 123, 2703–2714 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeeli, T. et al. Pyoderma gangrenosum, acne and ulcerative colitis in a patient with a novel mutation in the PSTPIP1 gene. Clin. Exp. Dermatol. 40, 367–372 (2015).

    CAS  PubMed  Google Scholar 

  54. Marzano, A. V. et al. Autoinflammation in pyoderma gangrenosum and its syndromic form (pyoderma gangrenosum, acne and suppurative hidradenitis). Br. J. Dermatol. 176, 1588–1598 (2017).

    CAS  PubMed  Google Scholar 

  55. Calderon-Castrat, X. et al. PSTPIP1 gene mutation in a pyoderma gangrenosum, acne and suppurative hidradenitis (PASH) syndrome. Br. J. Dermatol. 175, 194–198 (2016).

    CAS  PubMed  Google Scholar 

  56. Cugno, M., Borghi, A. & Marzano, A. V. PAPA, PASH and PAPASH syndromes: pathophysiology, presentation and treatment. Am. J. Clin. Dermatol. 18, 555–562 (2017).

    PubMed  Google Scholar 

  57. Saito, N. et al. Novel PSTPIP1 gene mutation in pyoderma gangrenosum, acne and suppurative hidradenitis syndrome. J. Dermatol. 45, e213–e214 (2018).

    PubMed  Google Scholar 

  58. Cote, J. F. et al. PSTPIP is a substrate of PTP-PEST and serves as a scaffold guiding PTP-PEST toward a specific dephosphorylation of WASP. J. Biol. Chem. 277, 2973–2986 (2002).

    CAS  PubMed  Google Scholar 

  59. Omenetti, A. et al. Disease activity accounts for long-term efficacy of IL-1 blockers in pyogenic sterile arthritis pyoderma gangrenosum and severe acne syndrome. Rheumatology 55, 1325–1335 (2016).

    CAS  PubMed  Google Scholar 

  60. Laberko, A. et al. HSCT is effective in patients with PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2020.11.043 (2020).

    Article  PubMed  Google Scholar 

  61. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    CAS  PubMed  Google Scholar 

  62. Akula, M. K. et al. Control of the innate immune response by the mevalonate pathway. Nat. Immunol. 17, 922–929 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Skinner, O. P. et al. Lack of protein prenylation promotes NLRP3 inflammasome assembly in human monocytes. J. Allergy Clin. Immunol. 143, 2315–2317.e3 (2019).

    CAS  PubMed  Google Scholar 

  64. Ter Haar, N. M. et al. The phenotype and genotype of mevalonate kinase deficiency: a series of 114 cases from the Eurofever registry. Arthritis Rheumatol. 68, 2795–2805 (2016).

    PubMed  Google Scholar 

  65. Frenkel, J. et al. Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum. 46, 2794–2803 (2002).

    CAS  PubMed  Google Scholar 

  66. Houten, S. M. et al. Temperature dependence of mutant mevalonate kinase activity as a pathogenic factor in hyper-IgD and periodic fever syndrome. Hum. Mol. Genet. 11, 3115–3124 (2002).

    CAS  PubMed  Google Scholar 

  67. Houten, S. M., van Woerden, C. S., Wijburg, F. A., Wanders, R. J. & Waterham, H. R. Carrier frequency of the V377I (1129G>A) MVK mutation, associated with Hyper-IgD and periodic fever syndrome, in the Netherlands. Eur. J. Hum. Genet. 11, 196–200 (2003).

    CAS  PubMed  Google Scholar 

  68. Mandey, S. H., Schneiders, M. S., Koster, J. & Waterham, H. R. Mutational spectrum and genotype-phenotype correlations in mevalonate kinase deficiency. Hum. Mutat. 27, 796–802 (2006).

    CAS  PubMed  Google Scholar 

  69. Zhang, S. Q. et al. Exome sequencing identifies MVK mutations in disseminated superficial actinic porokeratosis. Nat. Genet. 44, 1156–1160 (2012).

    CAS  PubMed  Google Scholar 

  70. Kubo, A. et al. Clonal expansion of second-hit cells with somatic recombinations or C>T transitions form Porokeratosis in MVD or MVK mutant heterozygotes. J. Invest. Dermatol. 139, 2458–2466.e9 (2019).

    CAS  PubMed  Google Scholar 

  71. Neven, B. et al. Allogeneic bone marrow transplantation in mevalonic aciduria. N. Engl. J. Med. 356, 2700–2703 (2007).

    CAS  PubMed  Google Scholar 

  72. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    CAS  PubMed  Google Scholar 

  73. Mathur, A., Hayward, J. A. & Man, S. M. Molecular mechanisms of inflammasome signaling. J. Leukoc. Biol. 103, 233–257 (2018).

    CAS  PubMed  Google Scholar 

  74. Sandall, C. F., Ziehr, B. K. & MacDonald, J. A. ATP-binding and hydrolysis in inflammasome activation. Molecules 25, 4572 (2020).

    CAS  PubMed Central  Google Scholar 

  75. Alehashemi, S. & Goldbach-Mansky, R. Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18. Front. Immunol. 11, 1840 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chavarria-Smith, J., Mitchell, P. S., Ho, A. M., Daugherty, M. D. & Vance, R. E. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog. 12, e1006052 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Masters, S. L. et al. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 37, 1009–1023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu, C. H., Moecking, J., Geyer, M. & Masters, S. L. Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice. J. Mol. Biol. 430, 142–152 (2018).

    CAS  PubMed  Google Scholar 

  79. Bauernfried, S., Scherr, M. J., Pichlmair, A., Duderstadt, K. E. & Hornung, V. Human NLRP1 is a sensor for double-stranded RNA. Science 371, eabd0811 (2021).

    CAS  PubMed  Google Scholar 

  80. Kummer, J. A. et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J. Histochem. Cytochem. 55, 443–452 (2007).

    CAS  PubMed  Google Scholar 

  81. Finger, J. N. et al. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J. Biol. Chem. 287, 25030–25037 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hollingsworth, L. R. et al. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature https://doi.org/10.1038/s41586-021-03350-4 (2021).

    Article  PubMed  Google Scholar 

  83. Soler, V. J. et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J. Med. Genet. 50, 246–254 (2013).

    CAS  PubMed  Google Scholar 

  84. Zhong, F. L. et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167, 187–202.e17 (2016).

    CAS  PubMed  Google Scholar 

  85. Herlin, T. et al. Autoinflammatory disease with corneal and mucosal dyskeratosis caused by a novel NLRP1 variant. Rheumatology 59, 2334–2339 (2020).

    PubMed  Google Scholar 

  86. Grandemange, S. et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann. Rheum. Dis. 76, 1191–1198 (2017).

    CAS  PubMed  Google Scholar 

  87. Drutman, S. B. et al. Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. Proc. Natl Acad. Sci. USA 116, 19055–19063 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Magitta, N. F. et al. A coding polymorphism in NALP1 confers risk for autoimmune Addison’s disease and type 1 diabetes. Genes Immun. 10, 120–124 (2009).

    CAS  PubMed  Google Scholar 

  89. Jin, Y. et al. NALP1 in vitiligo-associated multiple autoimmune disease. N. Engl. J. Med. 356, 1216–1225 (2007).

    CAS  PubMed  Google Scholar 

  90. Levandowski, C. B. et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1beta processing via the NLRP1 inflammasome. Proc. Natl Acad. Sci. USA. 110, 2952–2956 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Fenini, G., Karakaya, T., Hennig, P., Di Filippo, M. & Beer, H. D. The NLRP1 inflammasome in human skin and beyond. Int. J. Mol. Sci. 21, 4788 (2020).

    CAS  PubMed Central  Google Scholar 

  92. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    CAS  PubMed  Google Scholar 

  93. de Torre-Minguela, C., Mesa Del Castillo, P. & Pelegrin, P. The NLRP3 and pyrin inflammasomes: implications in the pathophysiology of autoinflammatory diseases. Front. Immunol. 8, 43 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Guarda, G. et al. Differential expression of NLRP3 among hematopoietic cells. J. Immunol. 186, 2529–2534 (2011).

    CAS  PubMed  Google Scholar 

  95. Sharif, H. et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570, 338–343 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Booshehri, L. M. & Hoffman, H. M. CAPS and NLRP3. J. Clin. Immunol. 39, 277–286 (2019).

    PubMed  Google Scholar 

  97. Jéru, I., Hayrapetyan, H., Duquesnoy, P., Sarkisian, T. & Amselem, S. PYPAF1 nonsense mutation in a patient with an unusual autoinflammatory syndrome: role of PYPAF1 in inflammation. Arthritis Rheum. 54, 508–514 (2006).

    PubMed  Google Scholar 

  98. Frenkel, J., van Kempen, M. J., Kuis, W. & van Amstel, H. K. Variant chronic infantile neurologic, cutaneous, articular syndrome due to a mutation within the leucine-rich repeat domain of CIAS1. Arthritis Rheum. 50, 2719–2720 (2004).

    PubMed  Google Scholar 

  99. Matsubayashi, T., Sugiura, H., Arai, T., Oh-Ishi, T. & Inamo, Y. Anakinra therapy for CINCA syndrome with a novel mutation in exon 4 of the CIAS1 gene. Acta Paediatr. 95, 246–249 (2006).

    PubMed  Google Scholar 

  100. Jeru, I. et al. Functional consequences of a germline mutation in the leucine-rich repeat domain of NLRP3 identified in an atypical autoinflammatory disorder. Arthritis Rheum. 62, 1176–1185 (2010).

    CAS  PubMed  Google Scholar 

  101. Nakanishi, H. et al. NLRP3 mutation and cochlear autoinflammation cause syndromic and nonsyndromic hearing loss DFNA34 responsive to anakinra therapy. Proc. Natl Acad. Sci. USA 114, E7766–E7775 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hu, J., Zhu, Y., Zhang, J. Z., Zhang, R. G. & Li, H. M. A novel mutation in the pyrin domain of the NOD-like receptor family pyrin domain containing protein 3 in Muckle-Wells syndrome. Chin. Med. J. 130, 586–593 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Turunen, J. A. et al. Keratoendotheliitis fugax hereditaria: a novel cryopyrin-associated periodic syndrome caused by a mutation in the nucleotide-binding domain, leucine-rich repeat family, pyrin domain-containing 3 (NLRP3) gene. Am. J. Ophthalmol. 188, 41–50 (2018).

    CAS  PubMed  Google Scholar 

  104. Saito, M. et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 52, 3579–3585 (2005).

    CAS  PubMed  Google Scholar 

  105. Tanaka, N. et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 63, 3625–3632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, Q. et al. Brief report: cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthritis Rheumatol. 67, 2482–2486 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lasiglie, D. et al. Cryopyrin-associated periodic syndromes in Italian patients: evaluation of the rate of somatic NLRP3 mosaicism and phenotypic characterization. J. Rheumatol. 44, 1667–1673 (2017).

    CAS  PubMed  Google Scholar 

  108. Rowczenio, D. M. et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front. Immunol. 8, 1410 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Assrawi, E. et al. Somatic mosaic NLRP3 mutations and inflammasome activation in late-onset chronic urticaria. J. Invest. Dermatol. 140, 791–798.e2 (2020).

    CAS  PubMed  Google Scholar 

  110. Louvrier, C. et al. NLRP3-associated autoinflammatory diseases: phenotypic and molecular characteristics of germline versus somatic mutations. J. Allergy Clin. Immunol. 145, 1254–1261 (2020).

    CAS  PubMed  Google Scholar 

  111. Gusdorf, L. & Lipsker, D. Schnitzler syndrome: a review. Curr. Rheumatol. Rep. 19, 46 (2017).

    CAS  PubMed  Google Scholar 

  112. de Koning, H. D. et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J. Allergy Clin. Immunol. 135, 561–564 (2015).

    PubMed  Google Scholar 

  113. Rowczenio, D. M. et al. Molecular genetic investigation, clinical features, and response to treatment in 21 patients with Schnitzler syndrome. Blood 131, 974–981 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kuemmerle-Deschner, J. B. et al. Clinical and molecular phenotypes of low-penetrance variants of NLRP3: diagnostic and therapeutic challenges. Arthritis Rheumatol. 69, 2233–2240 (2017).

    CAS  PubMed  Google Scholar 

  115. Goldbach-Mansky, R. et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N. Engl. J. Med. 355, 581–592 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lachmann, H. J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    CAS  PubMed  Google Scholar 

  117. Vance, R. E. The NAIP/NLRC4 inflammasomes. Curr. Opin. Immunol. 32C, 84–89 (2015).

    Google Scholar 

  118. Rauch, I. et al. NAIP-NLRC4 Inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46, 649–659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Duncan, J. A. & Canna, S. W. The NLRC4 inflammasome. Immunol. Rev. 281, 115–123 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Poyet, J. L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001).

    CAS  PubMed  Google Scholar 

  121. Hu, Z. et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172–175 (2013).

    CAS  PubMed  Google Scholar 

  122. Qu, Y. et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490, 539–542 (2012).

    CAS  PubMed  Google Scholar 

  123. Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Liang, J. et al. Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatr. Dev. Pathol. 20, 498–505 (2017).

    PubMed  Google Scholar 

  126. Kawasaki, Y. et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 69, 447–459 (2017).

    CAS  PubMed  Google Scholar 

  127. Moghaddas, F. et al. Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)–LRR oligomerization interface. J. Allergy Clin. Immunol. 142, 1956–1967.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chear, C. T. et al. A novel de novo NLRC4 mutation reinforces the likely pathogenicity of specific LRR domain mutation. Clin. Immunol. 211, 108328 (2020).

    CAS  PubMed  Google Scholar 

  129. Kitamura, A., Sasaki, Y., Abe, T., Kano, H. & Yasutomo, K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J. Exp. Med. 211, 2385–2396 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Raghawan, A. K. et al. A disease-associated mutant of NLRC4 shows enhanced interaction with SUG1 leading to constitutive FADD-dependent caspase-8 activation and cell death. J. Biol. Chem. 292, 1218–1230 (2017).

    CAS  PubMed  Google Scholar 

  131. Volker-Touw, C. M. et al. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br. J. Dermatol. 176, 244–248 (2017).

    CAS  PubMed  Google Scholar 

  132. Canna, S. W. et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J. Allergy Clin. Immunol. 139, 1698–1701 (2017).

    CAS  PubMed  Google Scholar 

  133. Trindade, B. C. & Chen, G. Y. NOD1 and NOD2 in inflammatory and infectious diseases. Immunol. Rev. 297, 139–161 (2020).

    CAS  PubMed  Google Scholar 

  134. Gutierrez, O. et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J. Biol. Chem. 277, 41701–41705 (2002).

    CAS  PubMed  Google Scholar 

  135. Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K. & Girardin, S. E. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9–23 (2014).

    CAS  PubMed  Google Scholar 

  136. Travassos, L. H., Carneiro, L. A., Girardin, S. & Philpott, D. J. Nod proteins link bacterial sensing and autophagy. Autophagy 6, 409–411 (2010).

    PubMed  Google Scholar 

  137. Strober, W., Asano, N., Fuss, I., Kitani, A. & Watanabe, T. Cellular and molecular mechanisms underlying NOD2 risk-associated polymorphisms in Crohn’s disease. Immunol. Rev. 260, 249–260 (2014).

    CAS  PubMed  Google Scholar 

  138. Okafuji, I. et al. Role of the NOD2 genotype in the clinical phenotype of Blau syndrome and early-onset sarcoidosis. Arthritis Rheum. 60, 242–250 (2009).

    CAS  PubMed  Google Scholar 

  139. Rose, C. D. et al. Blau syndrome: cross-sectional data from a multicentre study of clinical, radiological and functional outcomes. Rheumatology 54, 1008–1016 (2015).

    CAS  PubMed  Google Scholar 

  140. de Inocencio, J. et al. Somatic NOD2 mosaicism in Blau syndrome. J. Allergy Clin. Immunol. 136, 484–487 e482 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Mensa-Vilaro, A. et al. Brief report: first identification of intrafamilial recurrence of Blau syndrome due to gonosomal NOD2 mosaicism. Arthritis Rheumatol. 68, 1039–1044 (2016).

    CAS  PubMed  Google Scholar 

  142. Kanazawa, N. et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105, 1195–1197 (2005).

    CAS  PubMed  Google Scholar 

  143. Maekawa, S., Ohto, U., Shibata, T., Miyake, K. & Shimizu, T. Crystal structure of NOD2 and its implications in human disease. Nat. Commun. 7, 11813 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Takada, S. et al. Pluripotent stem cell models of Blau syndrome reveal an IFN-gamma-dependent inflammatory response in macrophages. J. Allergy Clin. Immunol. 141, 339–349.e11 (2018).

    CAS  PubMed  Google Scholar 

  145. Yao, Q. et al. NOD2-associated autoinflammatory disease: a large cohort study. Rheumatology 54, 1904–1912 (2015).

    CAS  PubMed  Google Scholar 

  146. McDonald, C., Shen, M., Johnson, E. E., Kabi, A. & Yao, Q. Alterations in nucleotide-binding oligomerization domain-2 expression, pathway activation, and cytokine production in Yao syndrome. Autoimmunity 51, 53–61 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Netea, M. G. et al. NOD2 3020insC mutation and the pathogenesis of Crohn’s disease: impaired IL-1beta production points to a loss-of-function phenotype. Neth. J. Med. 63, 305–308 (2005).

    CAS  PubMed  Google Scholar 

  148. Ma, C. et al. Anti-TNF therapy within 2 years of Crohn’s disease diagnosis improves patient outcomes: a retrospective cohort study. Inflamm. Bowel Dis. 22, 870–879 (2016).

    PubMed  Google Scholar 

  149. Harden, J. L. et al. CARD14 expression in dermal endothelial cells in psoriasis. PLoS ONE 9, e111255 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Van Nuffel, E. et al. CARD14-mediated activation of paracaspase MALT1 in keratinocytes: implications for psoriasis. J. Invest. Dermatol. 137, 569–575 (2017).

    PubMed  Google Scholar 

  151. Howes, A. et al. Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-κB activation. Biochem. J. 473, 1759–1768 (2016).

    CAS  PubMed  Google Scholar 

  152. Jordan, C. T. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-κB, in psoriasis. Am. J. Hum. Genet. 90, 796–808 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Jordan, C. T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Fuchs-Telem, D. et al. Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am. J. Hum. Genet. 91, 163–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ammar, M. et al. CARD14 alterations in Tunisian patients with psoriasis and further characterization in European cohorts. Br. J. Dermatol. 174, 330–337 (2016).

    CAS  PubMed  Google Scholar 

  156. Li, Q. et al. Analysis of CARD14 polymorphisms in pityriasis rubra pilaris: activation of NF-κB. J. Invest. Dermatol. 135, 1905–1908 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Israel, L. & Mellett, M. Clinical and genetic heterogeneity of CARD14 mutations in psoriatic skin disease. Front. Immunol. 9, 2239 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Sugiura, K., Muto, M. & Akiyama, M. CARD14 c.526G>C (p.Asp176His) is a significant risk factor for generalized pustular psoriasis with psoriasis vulgaris in the Japanese cohort. J. Invest. Dermatol. 134, 1755–1757 (2014).

    CAS  PubMed  Google Scholar 

  159. Peled, A. et al. Loss-of-function mutations in caspase recruitment domain-containing protein 14 (CARD14) are associated with a severe variant of atopic dermatitis. J. Allergy Clin. Immunol. 143, 173–181.e10 (2019).

    CAS  PubMed  Google Scholar 

  160. Eytan, O., Sarig, O., Sprecher, E. & van Steensel, M. A. Clinical response to ustekinumab in familial pityriasis rubra pilaris caused by a novel mutation in CARD14. Br. J. Dermatol. 171, 420–422 (2014).

    CAS  PubMed  Google Scholar 

  161. Mostowy, S. & Shenoy, A. R. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat. Rev. Immunol. 15, 559–573 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Tangye, S. G. et al. Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunol. Cell Biol. 97, 389–402 (2019).

    PubMed  Google Scholar 

  163. Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

    CAS  PubMed  Google Scholar 

  164. Park, H., Chan, M. M. & Iritani, B. M. Hem-1: putting the "WAVE" into actin polymerization during an immune response. FEBS Lett. 584, 4923–4932 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Martinelli, S. et al. Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am. J. Hum. Genet. 102, 309–320 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lam, M. T. et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J. Exp. Med. 216, 2778–2799 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Gernez, Y. et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1beta inhibition. J. Allergy Clin. Immunol. 144, 1122–1125.e6 (2019).

    CAS  PubMed  Google Scholar 

  168. Aicart-Ramos, C., Valero, R. A. & Rodriguez-Crespo, I. Protein palmitoylation and subcellular trafficking. Biochim. Biophys. Acta 1808, 2981–2994 (2011).

    CAS  PubMed  Google Scholar 

  169. Castro, C. N. et al. NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J. Exp. Med. 217, e20192275 (2020).

    PubMed  PubMed Central  Google Scholar 

  170. Cook, S. A. et al. HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science 369, 202–207 (2020).

    CAS  PubMed  Google Scholar 

  171. Koronakis, V. et al. WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc. Natl Acad. Sci. USA 108, 14449–14454 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kahr, W. H. et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat. Commun. 8, 14816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Brigida, I. et al. T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood 132, 2362–2374 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Volpi, S. et al. A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. J. Allergy Clin. Immunol. 143, 2296–2299 (2019).

    PubMed  PubMed Central  Google Scholar 

  175. Randzavola, L. O. et al. Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity. J. Clin. Invest. 129, 5600–5614 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Standing, A. S. et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J. Exp. Med. 214, 59–71 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kuhns, D. B. et al. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128, 2135–2143 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Rodero, M. P. & Crow, Y. J. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 213, 2527–2538 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Gruber, C. et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J. Exp. Med. 217, e20192319 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Hu, M. et al. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. J. Clin. Invest. 131, e139333 (2021).

    CAS  PubMed Central  Google Scholar 

  181. Burdette, D. L. & Vance, R. E. STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol. 14, 19–26 (2013).

    CAS  PubMed  Google Scholar 

  182. Kumar, V. A STING to inflammation and autoimmunity. J. Leukoc. Biol. 106, 171–185 (2019).

    CAS  PubMed  Google Scholar 

  183. Ergun, S. L., Fernandez, D., Weiss, T. M. & Li, L. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178, 290–301.e10 (2019).

    CAS  PubMed  Google Scholar 

  184. Tanaka, Y. & Chen, Z. J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. Fremond, M. L. & Crow, Y. J. STING-mediated lung inflammation and beyond. J. Clin. Immunol. 41, 501–514 (2021).

    PubMed  Google Scholar 

  186. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Fremond, M. L. et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J. Allergy Clin. Immunol. Pract. 9, 803–818.e11 (2021).

    PubMed  Google Scholar 

  188. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    PubMed  PubMed Central  Google Scholar 

  189. Picard, C. et al. Severe pulmonary fibrosis as the first manifestation of interferonopathy (TMEM173 mutation). Chest 150, e65–e71 (2016).

    PubMed  Google Scholar 

  190. Konig, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    PubMed  Google Scholar 

  191. Konno, H. et al. Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING. Cell Rep. 23, 1112–1123 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Saldanha, R. G. et al. A mutation outside the dimerization domain causing atypical STING-associated vasculopathy with onset in infancy. Front. Immunol. 9, 1535 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Keskitalo, S. et al. Novel TMEM173 mutation and the role of disease modifying alleles. Front. Immunol. 10, 2770 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Seo, J. et al. Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173. J. Allergy Clin. Immunol. 139, 1396–1399.e12 (2017).

    CAS  PubMed  Google Scholar 

  195. Lin, B. et al. A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). J. Allergy Clin. Immunol. 146, 1204–1208.e6 (2020).

    CAS  PubMed  Google Scholar 

  196. Melki, I. et al. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. J. Allergy Clin. Immunol. 140, 543–552.e5 (2017).

    CAS  PubMed  Google Scholar 

  197. Sanchez, G. A. M. et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Invest. 128, 3041–3052 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. Murata, S., Takahama, Y., Kasahara, M. & Tanaka, K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat. Immunol. 19, 923–931 (2018).

    CAS  PubMed  Google Scholar 

  199. Ebstein, F., Poli Harlowe, M. C., Studencka-Turski, M. & Kruger, E. Contribution of the unfolded protein response (UPR) to the pathogenesis of proteasome-associated autoinflammatory syndromes (PRAAS). Front. Immunol. 10, 2756 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Agarwal, A. K. et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87, 866–872 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Arima, K. et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc. Natl Acad. Sci. USA 108, 14914–14919 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Kitamura, A. et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Invest. 121, 4150–4160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Liu, Y. et al. Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64, 895–907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Torrelo, A. CANDLE syndrome as a paradigm of proteasome-related autoinflammation. Front. Immunol. 8, 927 (2017).

    PubMed  PubMed Central  Google Scholar 

  205. Brehm, A. et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 126, 795 (2016).

    PubMed  PubMed Central  Google Scholar 

  206. Sarrabay, G. et al. PSMB10, the last immunoproteasome gene missing for PRAAS. J. Allergy Clin. Immunol. 145, 1015–1017.e6 (2020).

    PubMed  Google Scholar 

  207. Kataoka, S. et al. Successful treatment of a novel type I interferonopathy due to a de novo PSMB9 gene mutation with a Janus kinase inhibitor. J Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2021.03.010 (2021).

    Article  PubMed  Google Scholar 

  208. Poli, M. C. et al. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am. J. Hum. Genet. 102, 1126–1142 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Dahlqvist, J. et al. A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am. J. Hum. Genet. 86, 596–603 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. de Jesus, A. A. et al. Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4. J. Allergy Clin. Immunol. 143, 1939–1943.e8 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Packard, T. A. & Cambier, J. C. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000Prime Rep. 5, 40 (2013).

    PubMed  PubMed Central  Google Scholar 

  212. Rosen, L. B., Ginty, D. D., Weber, M. J. & Greenberg, M. E. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207–1221 (1994).

    CAS  PubMed  Google Scholar 

  213. Ombrello, M. J. et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366, 330–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhou, Q. et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91, 713–720 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Neves, J. F. et al. Novel PLCG2 mutation in a patient with APLAID and Cutis Laxa. Front. Immunol. 9, 2863 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Moran-Villasenor, E. et al. Expanding the clinical features of autoinflammation and phospholipase Cgamma2-associated antibody deficiency and immune dysregulation by description of a novel patient. J. Eur. Acad. Dermatol. Venereol. 33, 2334–2339 (2019).

    CAS  PubMed  Google Scholar 

  217. Martin-Nalda, A. et al. Severe autoinflammatory manifestations and antibody deficiency due to novel hypermorphic PLCG2 mutations. J. Clin. Immunol. 40, 987–1000 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Milner, J. D. PLAID: a syndrome of complex patterns of disease and unique phenotypes. J. Clin. Immunol. 35, 527–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Walliser, C. et al. Functional characterization of phospholipase C-gamma2 mutant protein causing both somatic ibrutinib resistance and a germline monogenic autoinflammatory disorder. Oncotarget 9, 34357–34378 (2018).

    PubMed  PubMed Central  Google Scholar 

  220. Bastarache, L. et al. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science 359, 1233–1239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Liu, T. M. et al. Hypermorphic mutation of phospholipase C, gamma2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. Blood 126, 61–68 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. He, S. & Wang, X. RIP kinases as modulators of inflammation and immunity. Nat. Immunol. 19, 912–922 (2018).

    CAS  PubMed  Google Scholar 

  223. Meng, Y., Sandow, J. J., Czabotar, P. E. & Murphy, J. M. The regulation of necroptosis by post-translational modifications. Cell Death Differ. 28, 861–883 (2021).

    CAS  PubMed  Google Scholar 

  224. Cuchet-Lourenço, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018).

    PubMed  PubMed Central  Google Scholar 

  225. Li, Y. et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 116, 970–975 (2019).

    CAS  PubMed  Google Scholar 

  226. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).

    CAS  PubMed  Google Scholar 

  227. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    CAS  PubMed  Google Scholar 

  228. Navon Elkan, P. et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N. Engl. J. Med. 370, 921–931 (2014).

    PubMed  Google Scholar 

  229. Zhou, Q. et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370, 911–920 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Zavialov, A. V. & Engstrom, A. Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem. J. 391, 51–57 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Iwaki-Egawa, S., Yamamoto, T. & Watanabe, Y. Human plasma adenosine deaminase 2 is secreted by activated monocytes. Biol. Chem. 387, 319–321 (2006).

    CAS  PubMed  Google Scholar 

  232. Meyts, I. & Aksentijevich, I. Deficiency of adenosine deaminase 2 (DADA2): updates on the phenotype, genetics, pathogenesis, and treatment. J. Clin. Immunol. 38, 569–578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Hashem, H., Kelly, S. J., Ganson, N. J. & Hershfield, M. S. Deficiency of adenosine deaminase 2 (DADA2), an inherited cause of polyarteritis nodosa and a mimic of other systemic rheumatologic disorders. Curr. Rheumatol. Rep. 19, 70 (2017).

    PubMed  Google Scholar 

  234. Lee, P. Y. et al. Disrupted N-linked glycosylation as a disease mechanism in deficiency of ADA2. J. Allergy Clin. Immunol. 142, 1363–1365.e8 (2018).

    PubMed  PubMed Central  Google Scholar 

  235. Lee, P. Y. et al. Genotype and functional correlates of disease phenotype in deficiency of adenosine deaminase 2 (DADA2). J. Allergy Clin. Immunol. 145, 1664–1672.e10 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Ombrello, A. K. et al. Treatment strategies for deficiency of adenosine deaminase 2. N. Engl. J. Med. 380, 1582–1584 (2019).

    PubMed  PubMed Central  Google Scholar 

  237. Hashem, H. et al. Hematopoietic stem cell transplantation rescues the hematological, immunological, and vascular phenotype in DADA2. Blood 130, 2682–2688 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Nagaike, T. et al. Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases. J. Biol. Chem. 276, 40041–40049 (2001).

    CAS  PubMed  Google Scholar 

  239. Wilusz, J. E., Whipple, J. M., Phizicky, E. M. & Sharp, P. A. tRNAs marked with CCACCA are targeted for degradation. Science 334, 817–821 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Wiseman, D. H. et al. A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 122, 112–123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Chakraborty, P. K. et al. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124, 2867–2871 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Leibovitch, M., Hanic-Joyce, P. J. & Joyce, P. B. M. In vitro studies of disease-linked variants of human tRNA nucleotidyltransferase reveal decreased thermal stability and altered catalytic activity. Biochim. Biophys. Acta Proteins Proteom. 1866, 527–540 (2018).

    CAS  PubMed  Google Scholar 

  243. Slade, A., Kattini, R., Campbell, C. & Holcik, M. Diseases associated with defects in tRNA CCA addition. Int. J. Mol. Sci. 21, 3780 (2020).

    CAS  PubMed Central  Google Scholar 

  244. Frans, G. et al. Homozygous N-terminal missense mutation in TRNT1 leads to progressive B-cell immunodeficiency in adulthood. J. Allergy Clin. Immunol. 139, 360–363.e6 (2017).

    CAS  PubMed  Google Scholar 

  245. Wedatilake, Y. et al. TRNT1 deficiency: clinical, biochemical and molecular genetic features. Orphanet J. Rare Dis. 11, 90 (2016).

    PubMed  PubMed Central  Google Scholar 

  246. Giannelou, A. et al. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann. Rheum. Dis. 77, 612–619 (2018).

    CAS  PubMed  Google Scholar 

  247. Barton, C., Kausar, S., Kerr, D., Bitetti, S. & Wynn, R. SIFD as a novel cause of severe fetal hydrops and neonatal anaemia with iron loading and marked extramedullary haemopoiesis. J. Clin. Pathol. 71, 275–278 (2018).

    PubMed  Google Scholar 

  248. Lougaris, V. et al. Novel biallelic TRNT1 mutations resulting in sideroblastic anemia, combined B and T cell defects, hypogammaglobulinemia, recurrent infections, hypertrophic cardiomyopathy and developmental delay. Clin. Immunol. 188, 20–22 (2018).

    CAS  PubMed  Google Scholar 

  249. DeLuca, A. P. et al. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis. Hum. Mol. Genet. 25, 44–56 (2015).

    PubMed  PubMed Central  Google Scholar 

  250. Hull, S. et al. Expanding the phenotype of TRNT1-related immunodeficiency to include childhood cataract and inner retinal dysfunction. JAMA Ophthalmol. 134, 1049–1053 (2016).

    PubMed  Google Scholar 

  251. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    CAS  PubMed  Google Scholar 

  252. Gruber, C. N. et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53, 672–684.e11 (2020).

    PubMed  PubMed Central  Google Scholar 

  253. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank David Beck and Christina Kozycki for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ivona Aksentijevich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks M. Gattorno, S. Ozen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Monogenic

A phenotype or disease that is caused by variation in a single gene and has well-defined inheritance pattern.

Phenotype

An organism’s observable traits such as height, hair colour or blood type.

Null alleles

Genetic changes that cause a complete lack of protein expression or can notably alter protein function.

Somatic variants

Genetic alterations that occur post-zygotic in somatic cells (for example, leukocytes and keratinocytes) and are not passed on to children.

Genotype

An organism’s complete set of genetic material; this term can be used to refer to the variants of a single gene or a set of variants in multiple genes.

Mendelian

The manner by which genes and traits are passed from parents to their offspring, described by Gregor Mendel.

Oligogenic

A phenotype or disease that is dependent on a few genes and is an intermediate between monogenic and polygenic inheritance.

Dominant

The type of inheritance pattern referring to when a single copy of the altered gene is sufficient to cause disease or express the trait.

Recessive

A type of inheritance pattern referring to when both copies of a gene are required for the phenotype or disease expressivity.

Biallellic

A term used to refer to both alleles of a single gene or gene locus (both paternal and maternal).

Missense variants

Genetic changes in a single nucleotide that might or might not result in the substitution of one amino acid for another in the protein.

Hypermorphic variants

A type of genetic change (also known as a gain-of-function mutation) where the altered gene product has an increased level of activity or is expressed at higher levels. These mutations are typically dominantly inherited.

Monoallelic

A term used to refer to when only one of the two copies of a particular gene (alleles) is actively expressed and the other allele is silent.

Heterozygous

An individual who has two different alleles of a particular gene.

Polygenic

A phenotype or disease that is influenced by several genes and often by environmental factors.

Prenylation

A post-translational modification that involves covalent attachment of a lipid consisting of either three (farnesyl) or four (geranylgeranyl) isoprene units to a cysteine residue at or near the C terminus of a protein.

Hypomorphic variants

A type of genetic change (also known as loss-of-function mutation) where the altered gene product has decreased activity or expression. These mutations are typically recessively inherited.

Nonsense mutation

A genetic change that causes the translation of a protein to terminate earlier than would occur with the wild-type gene.

Homozygous

An individual who has inherited the identical alleles of a particular gene from both parents.

De novo

A genetic change that arises in a germ cell or fertilized egg and is not inherited from the parents.

Disease expressivity

The extent to which a genotype shows its phenotypic expression in different people with the same genetic disease.

Digenic

A phenotype or disorder that is expressed only when two non-allelic controlling genes interact.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksentijevich, I., Schnappauf, O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 17, 405–425 (2021). https://doi.org/10.1038/s41584-021-00614-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00614-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing