Surface chemistry articles within Nature Chemistry

Featured

  • Article |

    On-surface polymerization is a promising technique to prepare organic functional nanomaterials, but it has remained difficult to carry out on insulating surfaces. Now, the photoinitiated radical polymerization of dimaleimide on KCl, initiated from a two-dimensional gas phase and guided by molecule–substrate interactions, has led to polymer fibres up to 1 μm long.

    • Franck Para
    • , Franck Bocquet
    •  & Matthew B. Watkins
  • Article |

    In solid metals, electron orbitals form broad bands and their binding of adsorbates depends on the bandwidth. Now, it is shown that a weak solute–matrix interaction in dilute alloys results in extremely narrow electronic bands on the solute, similar to a free-atom electronic structure. This structure affords unique adsorption properties important for catalysis.

    • M. T. Greiner
    • , T. E. Jones
    •  & R. Schlögl
  • Article |

    Atomic manipulation was used to control the reductive rearrangement of 1,1-dibromo alkenes to acetylenes on a NaCl surface at 5 K, and the stages of the reaction were visualized with atomic resolution using AFM. Polyynes ranging from triyne to octayne were prepared in this way, and STM was used to map their frontier orbitals and determine their transport gaps.

    • Niko Pavliček
    • , Przemyslaw Gawel
    •  & Leo Gross
  • News & Views |

    Molecular vibrations can be highly effective promoters of gas-phase chemistry. Now, measurements show that excited vibrational states can survive on metal surfaces far longer than expected — reshaping our understanding of how vibrational excitation might also promote or modify heterogeneously catalysed chemistry on metals.

    • Arthur L. Utz
  • Article |

    The vibrational relaxation of molecules adsorbed at metal surfaces is considered to be relatively fast and thus examples of vibrationally induced chemistry at surfaces are rare. The adsorption and subsequent desorption of long-lived vibrationally excited CO molecules from a gold surface have now been observed, suggesting that vibrational promotion of surface chemistry might be more prevalent than currently thought.

    • Pranav R. Shirhatti
    • , Igor Rahinov
    •  & Alec M. Wodtke
  • Article |

    Complex interfacial supramolecular architectures promise unique physical and chemical properties, but are challenging to make. Now, it has been shown that a simple organic precursor can undergo a convergent multi-step on-surface transformation to give more complex building blocks that assemble into a semi-regular Archimedean tessellation with long-range order.

    • Yi-Qi Zhang
    • , Mateusz Paszkiewicz
    •  & Florian Klappenberger
  • Article |

    Understanding how a supporting material can change the surface chemistry of the nanoparticle catalysts that it hosts is critical to tuning catalytic properties. Experimental Hammett studies and density functional theory calculations show that differences in reactivity can be attributed to differences in the electron density at metal active sites, which arises from differences in electron donation from the support.

    • Gaurav Kumar
    • , Luke Tibbitts
    •  & Bert D. Chandler
  • Article |

    A renewed interest in C–H bond activation has developed on account of the recent increased availability of shale gas. Now, using a combination of surface science, microscopy, theory and nanoparticle studies, the ability of coke-resistant Pt/Cu single-atom alloys to efficiently activate C–H bonds in alkanes has been demonstrated under realistic catalytic conditions.

    • Matthew D. Marcinkowski
    • , Matthew T. Darby
    •  & E. Charles H. Sykes
  • News & Views |

    Using chiral modifiers on the surfaces of heterogeneous catalysts is a potentially fruitful route to practical stereoselective chemistry. Now, a study of the dynamics of prochiral adsorbates on modified surfaces has shown that they can rapidly interconvert between adsorption states of different prochirality.

    • Wilfred T. Tysoe
  • Article |

    A chiral molecule on a metal surface can set up a prochiral molecule for an enantioselective reaction step by forming a hydrogen-bonded complex that imposes a specific adsorption geometry. Time-lapsed scanning tunnelling microscopy and density functional theory studies reveal that such complexes can sometimes switch between states of opposing prochirality.

    • Guillaume Goubert
    • , Yi Dong
    •  & Peter H. McBreen
  • Article |

    The manner in which carboxylates bind to the surface of nanoparticles has been an important question in materials science. Now, multinuclear magnetic resonance experiments — alongside DFT calculations, XPS and TEM measurements — have elucidated the three-dimensional ligand structures of gold nanoparticles capped with various ratios of carboxylate-containing ligands, and enabled the determination of the most probable binding modes.

    • Hind Al-Johani
    • , Edy Abou-Hamad
    •  & Jean-Marie Basset
  • Article |

    Cation–π interactions are critical for the adhesion proteins of marine organisms, yet the energetics of cation–π interactions in underwater environments remains uncharted. Nanoscale force measurements and NMR spectroscopy reveal that interfacial confinement fundamentally alters the energetics of cation–π mediated assembly.

    • Matthew A. Gebbie
    • , Wei Wei
    •  & Jacob N. Israelachvili
  • News & Views |

    Planar molecules may break mirror symmetry when aligned on a surface, but both right- and left-handed forms will be created. Starting with a single-handed precursor, chiral adsorbates of planar hydrocarbons with a single handedness are formed in on-surface reactions.

    • Karl-Heinz Ernst
  • Article |

    Flat, prochiral molecules form chiral adsorbates on achiral surfaces, but such assemblies are globally racemic. Now, it is shown that this mirror symmetry can be broken through stereocontrolled on-surface synthesis. Enantiopure helicene molecules can be transformed into flat, enantiofacially adsorbed products through a cascade of reactions on Ag(111) monitored by high-resolution scanning probe microscopy.

    • Oleksandr Stetsovych
    • , Martin Švec
    •  & Ivo Starý
  • Article |

    STM investigations and first principles calculations provide an understanding of the microscopic mechanism behind the mobility of N-heterocyclic carbenes (NHCs) on gold surfaces. Now, it is shown that a ballbot-type motion allows the formation of self-assembled monolayers due to the NHC extracting a gold atom from the surface, leading to a ligated gold adatom.

    • Gaoqiang Wang
    • , Andreas Rühling
    •  & Harald Fuchs
  • Article |

    Metal surfaces have been believed to be catalytic, but the mechanism of catalysis is unknown. Now, graphene nanoribbons (GNRs) can be grown on Au(111) from a ‘Z-bar-linkage' precursor through a conformation-controlled mechanism. Chemical vapour deposition of precursors adopting a chiral conformation produced homochiral polymers, which are dehydrogenated to form GNRs.

    • Hiroshi Sakaguchi
    • , Shaotang Song
    •  & Takahiro Nakae
  • Article |

    Lateral anchoring of heteromolecules to graphene paves the way for the creation of hybrid materials with tunable properties. Now, following a surface-assisted dehydrogenative coupling reaction, the edges of graphene on silver have been functionalized with porphines. This enables the assembly of well-defined multifunctional graphene-based nanostructures.

    • Yuanqin He
    • , Manuela Garnica
    •  & Johannes V. Barth
  • News & Views |

    The slow kinetics of light-driven water oxidation on haematite is an important factor limiting the material's efficiency. Now, an intermediate of the water-splitting reaction has been identified offering hope that the full mechanism will soon be resolved.

    • Alexander J. Cowan
  • Article |

    Force-induced tautomerization in a single porphycene molecule is investigated on a Cu(110) surface at 5 K by using non-contact atomic force microscopy. The force needed to trigger the tautomerization process is quantified by force spectroscopy and theoretical calculations reveal the atomistic mechanism behind the reaction.

    • Janina N. Ladenthin
    • , Thomas Frederiksen
    •  & Takashi Kumagai
  • Article |

    Photoelectrochemical water oxidation with haematite is known to be associated with a build-up of holes at the electrode surface. Infrared spectra acquired during photoelectrochemical water oxidation have now allowed these holes to be identified as high-valent iron–oxo intermediate species involved in the water oxidation reaction.

    • Omid Zandi
    •  & Thomas W. Hamann
  • News & Views |

    The critical step in water splitting is the formation of a peroxo bond; the mechanism, thought to involve oxyl radical formation, remains elusive. Now, experiments reveal a distinct bond vibration directly connected to an oxyl radical that is simultaneously coupled to both the semiconductor electronic states and the motion of the surrounding water.

    • Heather Vanselous
    •  & Poul B. Petersen
  • Article |

    Quasicrystalline materials exhibit long-range order but no translational periodicity. Now, a random tiling quasicrystal has been fabricated on a Au(111) surface by coordination interactions between europium centres and linear dicarbonitrile linkers under stoichiometry control. The 2D metal–organic network exhibits the simultaneous presence of four-, five- and six-fold vertices and dodecagonal symmetry.

    • José I. Urgel
    • , David Écija
    •  & Johannes V. Barth
  • Article |

    The formation of homochiral supramolecular networks at solution–solid interfaces typically relies on the soldier-and-sergeant approach, in which a small amount of chiral modifier defines the handedness of the network. Now, judicious choice of the sergeant, solvent, temperature and concentration has enabled chiral induction pathways to be controlled so that a homochiral surface of either handedness can be assembled from the same system.

    • Yuan Fang
    • , Elke Ghijsens
    •  & Steven De Feyter
  • Article |

    Few-layer black phosphorus (BP) is a promising semiconductor, but it is highly reactive and susceptible to ambient degradation. Covalent functionalization with aryl radicals has now been shown to significantly improve the stability of exfoliated BP, as well as the performance of BP-based electronic devices through a controllable p-type doping effect.

    • Christopher R. Ryder
    • , Joshua D. Wood
    •  & Mark C. Hersam
  • Article |

    The single-bond-resolved chemical structures of transient intermediates in a complex bimolecular reaction cascade were imaged by noncontact atomic force microscopy. Theoretical simulations reveal that the kinetic stabilization of experimentally observable intermediates is governed by selective energy dissipation to the substrate and entropic changes along the reaction pathway.

    • Alexander Riss
    • , Alejandro Pérez Paz
    •  & Felix R. Fischer
  • Article |

    The preferential oxidation of CO is a potentially efficient means of purifying industrial hydrogen, however, no catalytic systems are known with sufficiently high activity and selectivity. Now Au/Al2O3 catalysts are shown to have outstanding activity and selectivity when both the feed flow-rate and the amount of surface water are carefully controlled.

    • Johnny Saavedra
    • , Todd Whittaker
    •  & Bert D. Chandler
  • Article |

    Achiral minerals often adopt a chiral shape when crystal growth proceeds in contact with chiral molecules. Now, detailed microscopic insight is provided into how the chiral footprint of hemifullerene (a buckybowl that is essentially half of C60) rearranges atoms at step edges on a copper surface into chiral motifs.

    • Wende Xiao
    • , Karl-Heinz Ernst
    •  & Roman Fasel
  • Article |

    The Bergman cyclization is a fascinating rearrangement reaction with implications beyond organic chemistry. It has now been shown that a reversible Bergman cyclization reaction in a single molecule sitting on an ultrathin NaCl film can be triggered and directly imaged using atomic force microscopy. The interconverted diradical and diyne products are shown to have distinct chemical and physical properties.

    • Bruno Schuler
    • , Shadi Fatayer
    •  & Leo Gross
  • Article |

    DNA nanostructures are typically used as molecular scaffolds. Now, it has been shown that they can also act as reusable templates for ‘molecular printing’ of DNA strands onto gold nanoparticles. The products inherit the recognition elements of the parent template: number, orientation and sequence asymmetry of DNA strands. This converts isotropic nanoparticles into complex building blocks.

    • Thomas G. W. Edwardson
    • , Kai Lin Lau
    •  & Hanadi F. Sleiman
  • Article |

    Controlling the self-assembly of nanoparticles using light has been demonstrated in many systems where the particle surfaces are functionalized with photoswitchable ligands. Now, it has been shown that the light-controlled self-assembly of non-photoresponsive nanoparticles can be achieved in a quantitative and reversible fashion by placing them in a photoresponsive medium.

    • Pintu K. Kundu
    • , Dipak Samanta
    •  & Rafal Klajn
  • Article |

    Based initially on the outcome of certain reactions but later backed up by spectroscopic evidence, chemists have proposed — for more than a century — the existence of arynes as extremely reactive intermediates in chemical transformations. Now, with the help of atomic force microscopy, it is finally possible to generate and directly visualize this elusive intermediate.

    • Niko Pavliček
    • , Bruno Schuler
    •  & Leo Gross
  • News & Views |

    The transfer of chirality is known to occur through chemical bonds. Now, chiral biomolecules have been observed to impart some of their optical properties to a spatially separated achiral dye — with the transfer mediated by plasmon resonance from an achiral metallic nanostructure.

    • Vladimiro Mujica
  • Article |

    Equilibrium adsorption of non-racemic mixtures of enantiomers onto an achiral surface is shown to lead to enantioenrichment by formation of homochiral clusters. Such auto-amplification must influence enantioselective processes such as heterogeneous catalysis, adsorption-based separations, and perhaps the processes that lead to the homochirality of life on Earth.

    • Yongju Yun
    •  & Andrew J. Gellman
  • News & Views |

    Defect-free Sierpiński triangles can be self-assembled on a silver surface through a combination of molecular design and thermal annealing. Three-fold halogen-bonding arrays and precise surface epitaxy preclude structural errors, thus enabling the high-level complexity of these supramolecular fractal patterns.

    • Steven L. Tait
  • Article |

    A series of molecular fractals, specifically Sierpiński triangles, can be assembled on a Ag(111) surface from small, bent oligophenyls with a bromo group at each end. The self-assembly is driven by the formation of synergistic halogen and hydrogen bonds between the molecular building blocks, and defect-free structures with more than 100 individual components are observed.

    • Jian Shang
    • , Yongfeng Wang
    •  & Kai Wu
  • News & Views |

    Identifying the contribution of different surface sites to the overall kinetics of molecular desorption from solid surfaces is difficult even when using single crystals. A new technique that combines molecular beams with UV−UV double resonance spectroscopy resolves this problem for the case of carbon monoxide on Pt(111).

    • Francisco Zaera
  • News & Views |

    The structure of liquid water is intensely studied, but it is not clear what happens to it when a surface is introduced. Now with the aid of X-ray spectroscopy it has been found that water molecules at the interface with a gold electrode have a different structure than in the bulk.

    • Bernd Winter
  • Article |

    Biopolymers adopt functional tertiary structures through folding and multiplex formation. Synthetic molecules with protein-like dimensions — monodisperse cyclic porphyrin polymers with diameters of 13–21 nm — have now been shown to exhibit biomimetic self-organization by forming nested structures on a gold surface. These assemblies are formed both under vacuum and during deposition from solution.

    • Dmitry V. Kondratuk
    • , Luís M. A. Perdigão
    •  & Harry L. Anderson
  • Review Article |

    Bringing porphyrins in contact with well-defined interfaces generates a rich playground of chemical behaviour and properties for exploration and exploitation. This Review examines our current understanding of surface-confined tetrapyrroles and their embedding in nanoarchitectures - discussing both the structural and functional attributes, and methods by which to manipulate their intramolecular and organizational features.

    • Willi Auwärter
    • , David Écija
    •  & Johannes V. Barth
  • News & Views |

    The controlled synthesis of two-dimensional carbon nanomaterials enables their properties to be tailored for potential device applications. Functionalized graphene-like nanosheets with controlled thickness have now been obtained by irradiating monolayers of carbon-rich molecular precursors at room temperature.

    • Jean-François Morin
  • Article |

    Thiol-based self-assembled monolayers have a huge variety of potential applications but are hampered by oxidative and thermal instability. Now, N-heterocyclic carbenes are shown to form densely packed layers on Au(111) that are considerably more stable than thiol films, resisting hot organic solvents, acid, base, oxidant and oxidative electrohemical etching.

    • Cathleen M. Crudden
    • , J. Hugh Horton
    •  & Gang Wu
  • News & Views |

    Quantitatively studying how the rate of a chemical reaction is affected by a reactant's atomic-scale environment is extremely challenging. This has now been achieved at the single-molecule level using scanning tunnelling microscopy to monitor tautomerization in an atomically well-defined environment.

    • Peter Liljeroth
  • Article |

    The rate of an intramolecular hydrogen transfer reaction in a single porphycene molecule resting on a copper surface can be controlled by placing a copper adatom close to it. Cooperativity effects are also observed in rows of porphycene molecules, where the reaction rate of each individual molecule depends on the precise tautomer state of its neighbours.

    • Takashi Kumagai
    • , Felix Hanke
    •  & Leonhard Grill
  • Article |

    A scanning tunnelling microscope has been used to image multistep chemical reactions at a solid/liquid interface with single-molecule resolution. On reacting Mn(III) porphyrins with either O2 or a single oxygen donor, at least four distinct reaction intermediates and products were detected and their interconversion could be observed in real space and real time.

    • Duncan den Boer
    • , Min Li
    •  & Johannes A. A. W. Elemans