Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Free-atom-like d states in single-atom alloy catalysts

Abstract

Alloying provides a means by which to tune a metal catalyst’s electronic structure and thus tailor its performance; however, mean-field behaviour in metals imposes limits. To access unprecedented catalytic behaviour, materials must exhibit emergent properties that are not simply interpolations of the constituent components’ properties. Here we show an emergent electronic structure in single-atom alloys, whereby weak wavefunction mixing between minority and majority elements results in a free-atom-like electronic structure on the minority element. This unusual electronic structure alters the minority element’s adsorption properties such that the bonding with adsorbates resembles the bonding in molecular metal complexes. We demonstrate this phenomenon with AgCu alloys, dilute in Cu, where the Cu d states are nearly unperturbed from their free-atom state. In situ electron spectroscopy demonstrates that this unusual electronic structure persists in reaction conditions and exhibits a 0.1 eV smaller activation barrier than bulk Cu in methanol reforming. Theory predicts that several other dilute alloys exhibit this phenomenon, which offers a design approach that may lead to alloys with unprecedented catalytic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DOS plots show the free-atom-like nature of the Cu 3d states in AgCu.
Fig. 2: Evidence of charge transfer.
Fig. 3: Newns–Anderson–Grimley adsorption model.
Fig. 4: The formation of new bonds.
Fig. 5: Adsorption energy trends.
Fig. 6: Free-atom-like state in reaction conditions.
Fig. 7: Alternative narrow d-band alloys.

Similar content being viewed by others

References

  1. Sabatier, P. Hydrogénations et déshydrogénations par catalyse. Ber. Deutsch. Chem. Gesellschaft 44, 1984–2001 (1911).

    Article  CAS  Google Scholar 

  2. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article  CAS  Google Scholar 

  3. Bligaard, T. & Nørskov, J. K. in Heterogeneous Catalysis Chemical Bonding at Surfaces and Interfaces (eds Nilsson, A., Pettersson, L. & Nørskov, J. K.) 255–321 (Elsevier, Amsterdam, 2008).

  4. Hammer, B. & Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995).

    Article  CAS  Google Scholar 

  5. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Vojvodic, A. & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl Sci. Rev. 2, 140–143 (2015).

    Article  CAS  Google Scholar 

  9. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  10. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Tierney, H. L., Baber, A. E., Kitchin, J. R. & Sykes, E. C. H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Phys. Rev. Lett. 103, 246102 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Baber, A. E., Tierney, H. L., Lawton, T. J. & Sykes, E. C. H. An atomic-scale view of palladium alloys and their ability to dissociate molecular hydrogen. ChemCatChem 3, 607–614 (2011).

    Article  CAS  Google Scholar 

  14. Rupprechter, G. Popping up to the surface. Nat. Chem. 9, 833–834 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Thirumalai, H. & Kitchin, J. R. Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 61, 462–474 (2018).

    Article  CAS  Google Scholar 

  18. Inderwildi, O. R., Jenkins, S. J. & King, D. A. When adding an unreactive metal enhances catalytic activity: NOx decomposition over silver–rhodium bimetallic surfaces. Surf. Sci. 601, L103–L108 (2007).

    Article  CAS  Google Scholar 

  19. Greiner, M. T. et al. Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation. ACS Catal. 8, 2286–2295 (2018).

    Article  CAS  Google Scholar 

  20. Abbati, I. et al. Solid-state effects on the valence-band 4d-photoionization cross sections at the Cooper minimum. Phys. Rev. Lett. 50, 1799–1802 (1983).

    Article  CAS  Google Scholar 

  21. Subramanian, P. R. & Perepezko, J. H. The Ag–Cu (silver–copper) system. J. Phase Equilibria 14, 62–75 (1993).

    Article  CAS  Google Scholar 

  22. Dweydari, A. W. & Mee, C. H. B. Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi 27, 223–230 (1975).

    Article  CAS  Google Scholar 

  23. Greiner, M. T., Chai, L., Helander, M. G., Tang, W. M. & Lu, Z. H. Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv. Funct. Mater. 22, 4557–4568 (2012).

    Article  CAS  Google Scholar 

  24. Pearson, R. G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988).

    Article  CAS  Google Scholar 

  25. Weinert, M. & Watson, R. E. Core-level shifts in bulk alloys and surface adlayers. Phys. Rev. B 51, 17168–17180 (1995).

    Article  CAS  Google Scholar 

  26. Olovsson, W., Göransson, C., Pourovskii, L. V., Johansson, B. & Abrikosov, I. A. Core-level shifts in fcc random alloys: a first-principles approach. Phys. Rev. B 72, 064203 (2005).

    Article  CAS  Google Scholar 

  27. Bagus, P. S., Ilton, E. S. & Nelin, C. J. The interpretation of XPS spectra: insights into materials properties. Surf. Sci. Rep. 68, 273–304 (2013).

    Article  CAS  Google Scholar 

  28. Ebert, H., Stöhr, J., Parkin, S. S. P., Samant, M. & Nilsson, A. L-edge X-ray absorption in fcc and bcc Cu metal: comparison of experimental and first-principles theoretical results. Phys. Rev. B 53, 16067–16073 (1996).

    Article  CAS  Google Scholar 

  29. Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    Article  CAS  Google Scholar 

  30. Newns, D. M. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178, 1123–1135 (1969).

    Article  CAS  Google Scholar 

  31. Vojvodic, A., Nørskov, J. K. & Abild-Pedersen, F. Electronic structure effects in transition metal surface chemistry. Top. Catal. 57, 25–32 (2013).

    Article  CAS  Google Scholar 

  32. Hammer, B. & Nørskov, J. K. in Advances in Catalysis Vol. 45 (eds Gates, B. & Knoezinger, H.) 71–129 (Academic, Cambridge MA, 2000).

  33. Grimley, T. B. The indirect interaction between atoms or molecules adsorbed on metals. Proc. Phys. Soc. 90, 751–764 (1967).

    Article  CAS  Google Scholar 

  34. Haynes, W. M. CRC Handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data (CRC, Boca Raton, 2009).

  35. Yong, S. T., Ooi, C. W., Chai, S. P. & Wu, X. S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. Int. J. Hydrogen Energy 38, 9541–9552 (2013).

    Article  CAS  Google Scholar 

  36. Matthias, B. T. et al. Magnetic moment of transition metal atoms in dilute solution and their effect on superconducting transition temperature. Phys. Rev. Lett. 5, 542–544 (1960).

    Article  CAS  Google Scholar 

  37. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 77, 3865–3868 (1996); erratum 78, 1396 (19987).

    Article  CAS  PubMed  Google Scholar 

  39. Jones, T. E. et al. Thermodynamic and spectroscopic properties of oxygen on silver under an oxygen atmosphere. Phys. Chem. Chem. Phys. 17, 9288–9312 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Greiner, M. T. et al. The oxidation of copper catalysts during ethylene epoxidation. Phys. Chem. Chem. Phys. 17, 25073–25089 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999).

    Article  CAS  Google Scholar 

  42. Pehlke, E. & Scheffler, M. Evidence for site-sensitive screening of core holes at the Si and Ge (001) surface. Phys. Rev. Lett. 71, 2338–2341 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Shirley, E. L. Ti 1s pre-edge features in rutile: a Bethe–Salpeter calculation. J. Electron Spectrosc. 136, 77–83 (2004).

    Article  CAS  Google Scholar 

  44. Soininen, J. A. & Shirley, E. L. Scheme to calculate core hole–electron interactions in solids. Phys. Rev. B 64, 165112 (2001).

    Article  CAS  Google Scholar 

  45. Vinson, J. & Rehr, J. J. Ab initio Bethe–Salpeter calculations of the X-ray absorption spectra of transition metals at the L-shell edges. Phys. Rev. B 86, 195135 (2012).

    Article  CAS  Google Scholar 

  46. Vinson, J., Rehr, J. J., Kas, J. J. & Shirley, E. L. Bethe–Salpeter equation calculations of core excitation spectra. Phys. Rev. B 83, 115106 (2011).

    Article  CAS  Google Scholar 

  47. Fuchs, M. & Scheffler, M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput. Phys. Commun. 119, 67–98 (1999).

    Article  CAS  Google Scholar 

  48. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  49. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  50. Krause, M. O. & Oliver, J. H. Natural widths of atomic K and L levels, Kα X‐ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data 8, 329–338 (1979).

    Article  CAS  Google Scholar 

  51. Fonseca, G. C., Handgraaf, J.-W., Baerends, E. J. & Bickelhaupt, F. M. Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J. Comput. Chem. 25, 189–210 (2004).

    Article  CAS  Google Scholar 

  52. Löwdin, P. O. On the non‐orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365–375 (1950).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the Alexander von Humboldt Foundation and the Max-Planck Society. We also thank the Helmholtz-Zentrum Berlin for their infrastructure support and Höchstleistungsrechenzentrum Stuttgart for access to the supercomputer HazelHen.

Author information

Authors and Affiliations

Authors

Contributions

M.T.G. and T.E.J. conceived, designed and planned the project. M.T.G. measured and analysed the photoemission spectra as well as activation energies. T.E.J. performed the theoretical calculations. R.S., S.P. and A.K.-G. provided direction, guidance and assistance in the data interpretation. S.B. assisted in photoemission measurements. L.Z. synthesized the samples used for the activity measurements. M.A. synthesized the bulk metal samples. M.S. and F.G. measured and analysed the X-ray diffraction data. M.T.G. and T.E.J. wrote the manuscript. All the authors provided input and advice while writing manuscript drafts. M.T.G. and T.E.J. contributed to this work equally.

Corresponding authors

Correspondence to M. T. Greiner or T. E. Jones.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1 and 2, Supplementary Data and Discussion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greiner, M.T., Jones, T.E., Beeg, S. et al. Free-atom-like d states in single-atom alloy catalysts. Nature Chem 10, 1008–1015 (2018). https://doi.org/10.1038/s41557-018-0125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0125-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing