Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies

Abstract

Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal–support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction schematic of BA oxidation over a metal-oxide-supported Au nanoparticle.
Figure 2: Substituent effects on BA oxidation.
Figure 3: Substituent and support effects on BA oxidation.
Figure 4: DFT results.
Figure 5: Correlation between experimentally observed Hammett slopes ρobs and DFT-calculated work functions φ.

Similar content being viewed by others

References

  1. Ponec, V. & Bond, G. C. in Studies in Surface Science and Catalysis: Catalysis by Metals and Alloys Vol. 95 (eds Delmon, B & Yates, J. T.) (Elsevier, 1995).

    Google Scholar 

  2. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    CAS  PubMed  Google Scholar 

  3. Daage, M. & Chianelli, R. R. Structure–function relations in molybdenum sulfide catalysts: the rim-edge model. J. Catal. 149, 414–427 (1994).

    CAS  Google Scholar 

  4. Chen, M., Kumar, D., Yi, C.-W. & Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 310, 291–293 (2005).

    CAS  PubMed  Google Scholar 

  5. Schauermann, S., Nilius, N., Shaikhutdinov, S. & Freund, H.-J. Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc. Chem. Res. 46, 1673–1681 (2013).

    CAS  PubMed  Google Scholar 

  6. Campbell, C. T. Catalyst–support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012).

    CAS  PubMed  Google Scholar 

  7. Liu, Z. et al. Dry reforming of methane on a highly-active Ni-CeO2 catalyst: effects of metal–support interactions on C–H bond breaking. Angew. Chem. Int. Ed. 55, 7455–7459 (2016).

    CAS  Google Scholar 

  8. Bruix, A. et al. A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012).

    CAS  PubMed  Google Scholar 

  9. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    CAS  PubMed  Google Scholar 

  10. Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

    CAS  PubMed  Google Scholar 

  11. Mao, M. et al. Metal support interaction in Pt nanoparticles partially confined in the mesopores of microsized mesoporous CeO2 for highly efficient purification of volatile organic compounds. ACS Catal. 6, 418–427 (2016).

    CAS  Google Scholar 

  12. Yen, H., Seo, Y., Kaliaguine, S. & Kleitz, F. Role of metal–support interactions, particle size, and metal–metal synergy in CuNi nanocatalysts for H2 generation. ACS Catal. 5, 5505–5511 (2015).

    CAS  Google Scholar 

  13. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

    CAS  PubMed  Google Scholar 

  14. Kattel, S. et al. CO2 hydrogenation over oxide-supported PtCo catalysts: the role of the oxide support in determining the product selectivity. Angew. Chem. Int. Ed. 55, 7968–7973 (2016).

    CAS  Google Scholar 

  15. Greeley, J. P. Active site of an industrial catalyst. Science 336, 810–811 (2012).

    PubMed  Google Scholar 

  16. Divins, N. J., Angurell, I., Escudero, C., Perez-Dieste, V. & Llorca, J. Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346, 620–623 (2014).

    CAS  PubMed  Google Scholar 

  17. Huang, L., Han, B., Xi, Y., Forrey, R. C. & Cheng, H. Influence of charge on the reactivity of supported heterogeneous transition metal catalysts. ACS Catal. 5, 4592–4597 (2015).

    CAS  Google Scholar 

  18. Pacchioni, G. Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Phys. Chem. Chem. Phys. 15, 1737–1757.

    CAS  PubMed  Google Scholar 

  19. Bamwenda, G. R., Tsubota, S., Nakamura, T. & Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett. 44, 83–87 (1997).

    CAS  Google Scholar 

  20. Hashmi, S. K. & Hutchings Graham, J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).

    Google Scholar 

  21. Stratakis, M. & Garcia, H. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem. Rev. 112, 4469–4506 (2012).

    CAS  PubMed  Google Scholar 

  22. Corma, A. & Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313, 332–334 (2006).

    CAS  PubMed  Google Scholar 

  23. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    CAS  PubMed  Google Scholar 

  24. Widmann, D. & Behm, R. J. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc. Chem. Res. 47, 740–749 (2014).

    CAS  PubMed  Google Scholar 

  25. Ide, M. S. & Davis, R. J. The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc. Chem. Res. 47, 825–833 (2014).

    CAS  PubMed  Google Scholar 

  26. DellaPina, C., Falletta, E. & Rossi, M. Update on selective oxidation using gold. Chem. Soc. Rev. 41, 350–369 (2012).

    CAS  Google Scholar 

  27. Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008).

    CAS  PubMed  Google Scholar 

  28. Xu, B., Madix, R. J. & Friend, C. M. Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies. Acc. Chem. Res. 47, 761–772 (2014).

    CAS  PubMed  Google Scholar 

  29. Grirrane, A., Corma, A. & Garcia, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 322, 1661–1664 (2008).

    CAS  PubMed  Google Scholar 

  30. Abad, A., Concepcion, P., Corma, A. & Garcia, H. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed. 44, 4066–4069 (2005).

    CAS  Google Scholar 

  31. Ishida, T., Nagaoka, M., Akita, T. & Haruta, M. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem. Eur. J. 14, 8456–8460 (2008).

    CAS  PubMed  Google Scholar 

  32. Abad, A., Corma, A. & Garcia, H. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. Chem. Eur. J. 14, 212–222 (2008).

    CAS  PubMed  Google Scholar 

  33. Fristrup, P., Johansen, L. B. & Christensen, C. H. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols. Catal. Lett. 120, 184–190 (2008).

    CAS  Google Scholar 

  34. Conte, M., Miyamura, H., Kobayashi, S. & Chechik, V. Spin trapping of Au–H intermediate in the alcohol oxidation by supported and unsupported gold catalysts. J. Am. Chem. Soc. 131, 7189–7196 (2009).

    CAS  PubMed  Google Scholar 

  35. Hammett, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59, 96–103 (1937).

    CAS  Google Scholar 

  36. Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (University Science, 2006).

    Google Scholar 

  37. Panthi, B. et al. Using thiol adsorption on supported Au nanoparticle catalysts to evaluate Au dispersion and the number of active sites for benzyl alcohol oxidation. ACS Catal. 5, 2232–2241 (2015).

    CAS  Google Scholar 

  38. Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides (Cambridge Univ. Press, 1994).

    Google Scholar 

  39. Pursell, C. J., Chandler, B. D., Manzoli, M. & Boccuzzi, F. CO adsorption on supported gold nanoparticle catalysts: application of the Temkin model. J. Phys. Chem. C 116, 11117–11125 (2012).

    CAS  Google Scholar 

  40. Livraghi, S. et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 128, 15666–15671 (2006).

    CAS  PubMed  Google Scholar 

  41. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  42. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Google Scholar 

  43. Parks, G. A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65, 177–198 (1965).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J.B. Miller and A. Gellman at Carnegie Mellon University for their attempts to measure oxide work functions and S.L.J. Lau at Pennsylvania State University for assistance with work function calculations. The authors acknowledge the US National Science Foundation (NSF, grant nos. CBET-1160217 and CHE-1012395) for financial support of this work. G.K. and M.J.J. acknowledge support from NSF DMREF grant no. 1436206. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported NSF grant no. ACI-1053575. A.M. and R.M.R. acknowledge the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Catalysis Sciences Program (grant no. DE-SC0016192) for partial funding of this research. L.T. thanks the Robert A. Welch Foundation (departmental grant no. W-0031) for summer support.

Author information

Authors and Affiliations

Authors

Contributions

L.T., J.N., B.P., B.D.C. and C.J.P. designed the catalysis experiments. L.T. and J.N. performed the catalysis experiments and analysed the data. B.P. prepared the Au/SiO2 catalyst and performed the thiol poisoning experiments. A.M. designed the transmission electron microscopy (TEM) and XPS experiments. A.M. and R.M.R. performed the TEM and XPS experiments and analysed data. G.K. and M.J. designed the computational work. G.K. built the Au/support model and calculated the BA reaction energetics. G.K. calculated the oxide work functions. B.D.C., G.K. and M.J. wrote the paper with assistance from C.J.P. and R.M.R.

Corresponding author

Correspondence to Bert D. Chandler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 26005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Tibbitts, L., Newell, J. et al. Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies. Nature Chem 10, 268–274 (2018). https://doi.org/10.1038/nchem.2911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing