Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy

Abstract

Semiconductor electrodes capable of using solar photons to drive water-splitting reactions, such as haematite (α-Fe2O3), have been the subject of tremendous interest over recent decades. The surface has been found to play a significant role in determining the efficiency of water oxidation with haematite; however, previous works have only allowed hypotheses to be formulated regarding the identity of relevant surface species. Here we investigate the water-oxidation reaction on haematite using infrared spectroscopy under photoelectrochemical (PEC) water-oxidation conditions. A potential- and light-dependent absorption peak at 898 cm−1 is assigned to a FeIV=O group, which is an intermediate in the PEC water-oxidation reaction. These results provide direct evidence of high-valent iron–oxo intermediates as the product of the first hole-transfer reaction on the haematite surface and represent an important step in establishing the mechanism of PEC water oxidation on semiconductor electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and results of infrared spectroscopy measurements during electrochemical and PEC water oxidation.
Figure 2: Plots of the measured current and infrared absorption spectra of haematite electrodes in response to illumination and an applied potential.
Figure 3: Plot of the effect of oxygen isotopic variation on the infrared absorption spectra during PEC water oxidation with haematite electrodes.

Similar content being viewed by others

References

  1. Kennedy, J. H. & Frese, K. W. Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709–714 (1978).

    Article  CAS  Google Scholar 

  2. Lindgren, T. et al. Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71, 231–243 (2002).

    Article  CAS  Google Scholar 

  3. Bjorksten, U., Moser, J. & Gratzel, M. Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6, 858–863 (1994).

    Article  Google Scholar 

  4. Kay, A., Cesar, I. & Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006).

    Article  CAS  Google Scholar 

  5. Jang, J.-W. et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nature Commun. 6, 7447 (2015).

    Article  Google Scholar 

  6. Zandi, O. & Hamann, T. Enhanced water splitting efficiency through selective surface state removal. J. Phys. Chem. Lett. 5, 1522–1526 (2014).

    Article  CAS  Google Scholar 

  7. Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: progress using haematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  8. Hamann, T. W. Splitting water with rust: hematite photoelectrochemistry. Dalton Trans. 41, 7830–7834 (2012).

    Article  CAS  Google Scholar 

  9. Kim, J. Y. et al. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 1–8 (2013).

    Google Scholar 

  10. Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nature Mater. 12, 842–849 (2013).

    Article  CAS  Google Scholar 

  11. Klahr, B. M. & Hamann, T. W. Voltage dependent photocurrent of thin film hematite electrodes. Appl. Phys. Lett. 99, 063508 (2011).

    Article  Google Scholar 

  12. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T. & Bisquert, J. Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294–4302 (2012).

    Article  CAS  Google Scholar 

  13. Pendlebury, S. R. et al. Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 5, 6304–6312 (2012).

    Article  CAS  Google Scholar 

  14. Dotan, H., Sivula, K., Grätzel, M., Rothschild, A. & Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011).

    Article  CAS  Google Scholar 

  15. Cummings, C. Y., Marken, F., Peter, L. M., Tahir, A. A. & Wijayantha, K. G. U. Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes. Chem. Commun. 48, 2027–2029 (2012).

    Article  CAS  Google Scholar 

  16. Young, K. M. H., Klahr, B. M., Zandi, O. & Hamann, T. W. Photocatalytic water oxidation with hematite electrodes. Catal. Sci. Technol. 3, 1660–1671 (2013).

    Article  CAS  Google Scholar 

  17. Upul Wijayantha, K. G., Saremi-Yarahmadi, S. & Peter, L. M. Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 5264–5270 (2011).

    Article  CAS  Google Scholar 

  18. Barroso, M., Pendlebury, S., Cowan, A. & Durrant, J. Charge carrier trapping, recombination and transfer in haematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724–2734 (2013).

    Article  CAS  Google Scholar 

  19. Cummings, C. Y., Marken, F., Peter, L. M., Upul Wijayantha, K. G. & Tahir, A. A. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134, 1228–1234 (2012).

    Article  CAS  Google Scholar 

  20. Barroso, M. et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640–15645 (2012).

    Article  CAS  Google Scholar 

  21. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 7626–7636 (2012).

    Article  CAS  Google Scholar 

  22. Klahr, B. M., Gimenez, S., Zandi, O., Fabregat-Santiago, F. & Hamann, T. W. Competitive photoelectrochemical methanol and water oxidation with hematite electrodes. ACS Appl. Mater. Interfaces 7, 7653–7660 (2015).

    Article  CAS  Google Scholar 

  23. Klahr, B. & Hamann, T. Water oxidation on hematite photoelectrodes: insight into the nature of surface states through in situ spectroelectrochemistry. J. Phys. Chem. C 118, 10393–10399 (2014).

    Article  CAS  Google Scholar 

  24. Trainor, T. P. et al. Structure and reactivity of the hydrated hematite (0001) surface. Surf. Sci. 573, 204–224 (2004).

    Article  CAS  Google Scholar 

  25. Hellman, A. & Pala, R. G. S. First principles study of photoinduced water-splitting on Fe2O3 . J. Phys. Chem. C 115, 12901–12907 (2011).

    Article  CAS  Google Scholar 

  26. Yatom, N., Neufeld, O. & Toroker, M. C. Towards settling the debate on the role of Fe2O3 surface states for water splitting. J. Phys. Chem. C 119, 24789–24795 (2015).

    Article  CAS  Google Scholar 

  27. Peter, L. M., Wijayantha, K. G. U. & Tahir, A. A. Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Discuss. Faraday Soc. 155, 309–322 (2012).

    Article  CAS  Google Scholar 

  28. Machan, C. W., Sampson, M. D., Chabolla, S. A., Dang, T. & Kubiak, C. P. Developing a mechanistic understanding of molecular electrocatalysts for CO2 reduction using infrared spectroelectrochemistry. Organometallics 33, 4550–4559 (2014).

    Article  CAS  Google Scholar 

  29. Araujo, P. Z. et al. FT-IR–ATR as a tool to probe photocatalytic interfaces. Colloids Surf. A 265, 73–80 (2005).

    Article  CAS  Google Scholar 

  30. Bigi, J. P. et al. A high-spin iron(IV)–oxo complex supported by a trigonal nonheme pyrrolide platform. J. Am. Chem. Soc. 134, 1536–1542 (2012).

    Article  CAS  Google Scholar 

  31. McDonald, A. R. & Que, L. High-valent nonheme iron–oxo complexes: synthesis, structure, and spectroscopy. Coord. Chem. Rev. 257, 414–428 (2013).

    Article  CAS  Google Scholar 

  32. Shi, H., Lercher, J. A. & Yu, X.-Y. Sailing into uncharted waters: recent advances in the in situ monitoring of catalytic processes in aqueous environments. Catal. Sci. Technol. 5, 3035–3060 (2015).

    Article  CAS  Google Scholar 

  33. Nakamura, R. & Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004).

    Article  CAS  Google Scholar 

  34. Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nature Chem. 6, 362–367 (2014).

    Article  CAS  Google Scholar 

  35. Sivasankar, N., Weare, W. W. & Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc 133, 12976–12979 (2011).

    Article  CAS  Google Scholar 

  36. Tiago de Oliveira, F. et al. Chemical and spectroscopic evidence for an FeV–oxo complex. Science 315, 835–838 (2007).

    Article  CAS  Google Scholar 

  37. Green, M. T. Application of Badger's rule to heme and non-heme iron–oxygen bonds: an examination of ferryl protonation states. J. Am. Chem. Soc. 128, 1902–1906 (2006).

    Article  CAS  Google Scholar 

  38. Bonnot, F. et al. Formation of high-valent iron–oxo species in superoxide reductase: characterization by resonance Raman spectroscopy. Angew. Chem. Int. Ed. 53, 5926–5930 (2014).

    Article  CAS  Google Scholar 

  39. Nakamura, R., Imanishi, A., Murakoshi, K. & Nakato, Y. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J. Am. Chem. Soc. 125, 7443–7450 (2003).

    Article  CAS  Google Scholar 

  40. Proshlyakov, D. A., Henshaw, T. F., Monterosso, G. R., Ryle, M. J. & Hausinger, R. P. Direct detection of oxygen intermediates in the non-heme Fe enzyme taurine/α-ketoglutarate dioxygenase. J. Am. Chem. Soc. 126, 1022–1023 (2004).

    Article  CAS  Google Scholar 

  41. Yamada, H. & Hurst, J. K. Resonance Raman, optical spectroscopic, and EPR characterization of the higher oxidation states of the water oxidation catalyst, cis,cis-[(bpy)2Ru(OH2)]2O4+. J. Am. Chem. Soc. 122, 5303–5311 (2000).

    Article  CAS  Google Scholar 

  42. Nakato, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, 1986).

    Google Scholar 

  43. Nakamura, R., Tanaka, T. & Nakato, Y. Oxygen photoevolution on a tantalum oxynitride photocatalyst under visible-light irradiation: how does water photooxidation proceed on a metal–oxynitride surface? J. Phys. Chem. B 109, 8920–8927 (2005).

    Article  CAS  Google Scholar 

  44. Nakamoto, K. et al. Resonance Raman and infrared spectra of molecular oxygen adducts of N,N′-ethylenebis(2,2-diacetylethylideneaminato)cobalt(II). J. Am. Chem. Soc. 104, 3386–3391 (1982).

    Article  CAS  Google Scholar 

  45. Banerjee, R., Proshlyakov, Y., Lipscomb, J. D. & Proshlyakov, D. A. Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518, 431–434 (2015).

    Article  CAS  Google Scholar 

  46. Klahr, B. M., Martinson, A. B. F. & Hamann, T. W. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27, 461–468 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-1150378). The authors thank M. Bruening for the generous access to his infrared spectrometer.

Author information

Authors and Affiliations

Authors

Contributions

O.Z. and T.W.H. conceived and designed the experiments. O.Z. performed the experiments and analysed the data. O.Z. and T.W.H. co-wrote the paper.

Corresponding author

Correspondence to Thomas W. Hamann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandi, O., Hamann, T. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nature Chem 8, 778–783 (2016). https://doi.org/10.1038/nchem.2557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing