Optical techniques articles within Nature Photonics

Featured

  • News & Views |

    Sub-cycle confinement and control of phase transitions in strongly correlated materials are theoretically demonstrated, potentially providing a way to investigate electron dynamics on timescales previously unattainable with these materials.

    • Eleftherios Goulielmakis
  • Article |

    Wide-field mid-infrared photothermal imaging is developed to supress the resolution degradation caused by photo-thermal heat diffusion. By employing a single-objective synthetic-aperture imaging with synchronized subnanosecond mid-infrared and visible light sources, spatial resolution of 120 nm is obtained.

    • Miu Tamamitsu
    • , Keiichiro Toda
    •  & Takuro Ideguchi
  • News & Views |

    Ultrasound-induced luminescence in trianthracene derivative-based nanoparticles enables tumour imaging and immunological profiling in a variety of in vivo models.

    • Cheng Xu
    •  & Kanyi Pu
  • News & Views |

    A non-common-path interferometric scheme enables holographic detection of single proteins of mass 90 kDa and estimation of single-protein polarizability.

    • Chia-Lung Hsieh
  • Article
    | Open Access

    Holographic microscopy with independent control of the signal and reference fields enables the holographic imaging of a single protein with mass below 100 kDa and estimation of their polarizability.

    • Jan Christoph Thiele
    • , Emanuel Pfitzner
    •  & Philipp Kukura
  • News & Views |

    Brillouin light scattering anisotropy microscopy affords single-shot collection of angle-resolved phonon dispersion, enabling the mapping of mechanical anisotropies in living matter with a frequency resolution of 10 MHz and a spatial resolution of 2 µm.

    • Yogeshwari S. Ambekar
    •  & Giuliano Scarcelli
  • News & Views |

    The fast response and efficiency of plastic scintillators are severely degraded by the preferential population of slow triplet excited states in luminescence centres, such as in dye molecules. This issue can be solved by hot exciton manipulation, which avoids population of the lowest triplet state.

    • Martin Nikl
  • Article |

    An optical readout technique for the chemical potential of an arbitrary two-dimensional material is realized using a monolayer transition metal dichalcogenide semiconductor sensor whose optical response sharply depends on the chemical potential.

    • Zhengchao Xia
    • , Yihang Zeng
    •  & Kin Fai Mak
  • Article
    | Open Access

    Using programmable integrated photonics to generate a higher-order free-space structured light beam promises lossless and reconfigurable control of the spatial distribution of light’s amplitude and phase with very short switching times.

    • Johannes Bütow
    • , Jörg S. Eismann
    •  & Peter Banzer
  • Article |

    Researchers overcome the typical scintillator trade-off between high efficiency and speed. In organic scintillators, researchers drove hot excitons into fast singlet emission states without involving the lowest triplet states, which led to a fast radiative lifetime and strong light yield that may be applicable to ultrafast detection and imaging.

    • Xinyuan Du
    • , Shan Zhao
    •  & Jiang Tang
  • News & Views |

    A coherent microwave-to-optical conversion scheme, previously feasible only under cryogenic environments, has now been expanded to ambient conditions by using Rydberg atoms.

    • Kai-Yu Liao
    • , Hui Yan
    •  & Shi-Liang Zhu
  • Review Article |

    This Review covers a comparison between various label-free biomedical imaging techniques, their advantages over label-based methods and relevant applications.

    • Natan T. Shaked
    • , Stephen A. Boppart
    •  & Jürgen Popp
  • News & Views |

    Combining photoacoustic excitation with optomechanics enables the mechanical modes associated with entire microorganisms to be detected, demonstrating that mechanical spectroscopy allows us to identify microorganisms and characterize their life stages.

    • Eduardo Gil-Santos
  • News & Views |

    Event-based detectors, which respond to local changes in light intensity rather than producing images, enable super-resolution single-molecule localization microscopy with sensitivity and resolution comparable to conventional methods.

    • Ian M. Dobbie
  • Article
    | Open Access

    Continuous-wave conversion of a 13.9 GHz field to a near-infrared optical signal is demonstrated by using Rydberg atoms at room temperature. The conversion bandwidth is 16 MHz and the conversion dynamic range is 57 dB, descending down to 3.8 K noise-equivalent temperature.

    • Sebastian Borówka
    • , Uliana Pylypenko
    •  & Michał Parniak
  • News & Views |

    Vibrations of individual molecules are difficult to detect due to thermal noise. In a recent report, researchers overcome this challenge, upconverting mid-infrared photons into visible light using nanophotonic cavities. The result is high-efficiency optical readout for single-molecule vibrational spectroscopy.

    • Matthew Sheldon
  • News & Views |

    The introduction of a two-step deconvolution workflow maximizes the detection of fluorescence in fluctuation-based super-resolution imaging, enabling a square millimetre field of view to be captured in as little as ten minutes.

    • David Baddeley
  • News & Views |

    A transmission electron microscopy technique enables movies of optical near-fields to be recorded with a temporal resolution faster than the oscillation of optical electric fields.

    • Yuya Morimoto
  • News & Views |

    A lithography-free photonic processor through dynamic control of optical gain distributions is demonstrated, allowing reconfigurable photonic neural networks and more efficient signal processing, and showing great promise in easing data traffic as well as accelerating information processing speeds.

    • Anna P. Ovvyan
    •  & Wolfram H. P. Pernice
  • Article |

    Natural vibrations of mesoscopic particles, such as living cells, are typically faint; occurring at megahertz to gigahertz frequencies also makes detection challenging. Now, researchers demonstrate real-time measurement of natural vibrations of single mesoscopic particles by using photoacoustic excitation and acoustic coupling to an optical microresonator for readout.

    • Shui-Jing Tang
    • , Mingjie Zhang
    •  & Yun-Feng Xiao
  • Article |

    The non-invasive control of light based on incoherent emission from multiple target positions can be achieved by retrieving mutually incoherent scattered fields from speckle patterns, and then time-reversing scattered fluorescence with digital phase conjugation.

    • YoonSeok Baek
    • , Hilton B. de Aguiar
    •  & Sylvain Gigan
  • Article |

    The intrinsic random amplitude and phase modulation of 40 distinct lines of a microresonator frequency comb operated in the modulation instability regime are used to realize massively parallel random-modulation continuous-wave light detection and ranging, without requiring any electro-optical modulator or microwave synthesizer.

    • Anton Lukashchuk
    • , Johann Riemensberger
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    Spatial-frequency tracking adaptive beacon light-field encoded endoscopy enables imaging through a single multimode fibre under bending and twisting. In vivo imaging with subcellular resolution is demonstrated in mice models.

    • Zhong Wen
    • , Zhenyu Dong
    •  & Qing Yang
  • Article
    | Open Access

    Photonic radar is exploited for non-contact vital sign detection with a demonstration on a cane toad with a view to application in humans. Optical signals generated from the system are also explored for LiDAR-based vital sign detection, which may yield improved accuracy and system robustness.

    • Ziqian Zhang
    • , Yang Liu
    •  & Benjamin J. Eggleton
  • Article |

    Two-photon excitation with mid- and near-infrared pulses encodes bond selectivity in fluorescence imaging. Single-molecule imaging and spectroscopy is demonstrated on individual fluorophores as well as various labelled biological targets.

    • Haomin Wang
    • , Dongkwan Lee
    •  & Lu Wei
  • News & Views |

    Two papers in Science demonstrate tracking of the stepping motion of the kinesin motor protein with nanometric spatial precision and sub-millisecond temporal resolution by using MINFLUX, a highly photon-efficient single-molecule localization technique.

    • Fernando D. Stefani
  • Article |

    Spatial light modulator-based lithography-free programmable light transmission through optical gain medium is demonstrated for optical switching and a rudimentary photonic neural network.

    • Tianwei Wu
    • , Marco Menarini
    •  & Liang Feng
  • Article |

    Researchers engineer double-tapered optical-fibre arrays and use perovskite nanocrystal substrates for X-ray imaging with a three orders of magnitude output gain and spatial resolution of 22 lp mm−1. Arrayed gamma-ray imaging is also demonstrated using a nanocrystal scintillator film.

    • Luying Yi
    • , Bo Hou
    •  & Xiaogang Liu
  • Article |

    Joint force measurements with entangled optical probes on two optomechanical sensors are demonstrated. The force sensitivity is improved by 40% in the shot-noise-dominant regime. The sensing bandwidth is improved by 20% in the thermal noise limit.

    • Yi Xia
    • , Aman R. Agrawal
    •  & Zheshen Zhang
  • News & Views |

    A photothermal microscopy technique overcomes the diffraction limit by exploiting the spatiotemporal dynamics of heat dissipation within the imaging volume, offering new opportunities for super-resolution, bond-selective and label-free imaging of biological targets.

    • Zhilun Zhao
    •  & Wei Min
  • Letter
    | Open Access

    A hyperspectral camera based on a random array of CMOS-compatible Fabry–Pérot filters is demonstrated. The hyperspectral camera exhibits performance comparable with that of a typical RGB camera, with 45% sensitivity to visible light, a spatial resolution of 3 px for 3 dB contrast, and a frame rate of 32.3 fps at VGA resolution.

    • Motoki Yako
    • , Yoshikazu Yamaoka
    •  & Atsushi Ishikawa