Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient and ultrafast organic scintillators by hot exciton manipulation

Abstract

Efficient and fast scintillators are in high demand in a variety of fields, such as medical diagnostics, scientific instruments and high-energy physics. However, the trade-off between high scintillation efficiency and fast timing properties is a common challenge facing almost all scintillators. To overcome this limitation, we have developed a strategy for organic scintillators by directing all hot excitons into fast singlet emission states without involving the lowest triplet states. Our scintillator, 1,1,2,2-tetrakis(4-bromophenyl)ethylene, shows an ultrafast radiative lifetime of 1.79 ns and a light yield of 34,600 photons per MeV, exhibiting an excellent combination of high light yield and short decay time. Our work provides a method to design efficient and ultrafast scintillators, and paves the way towards exciting applications for ultrafast detection and imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of a hot exciton scintillator.
Fig. 2: Scintillator performance of TPE-4Br.
Fig. 3: The hot exciton mechanism of TPE-4Br.
Fig. 4: Ultrafast detection and imaging of the TPE-4Br scintillator.

Similar content being viewed by others

Data availability

The main data that support the findings of this study are available in this Article and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request. Crystallographic data for TPE-4Br have been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC 1837774. A copy of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science 375, eabm9293 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ziegler, S. I. Positron emission tomography: principles, technology, and recent developments. Nucl. Phys. A 752, 679–687 (2005).

    Article  ADS  Google Scholar 

  4. Gandini, M. et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 15, 462–468 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Autrata, R., Schauer, P. & Kuapil, J. A single crystal of YAG—new fast scintillator in SEM. J. Phys. E 11, 707 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Fabjan, C. W. & Ludlam, T. W. Calorimetry in high-energy physics. Annu. Rev. Nucl. Part. Sci. 32, 335–389 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Lecoq, P., Gektin, A. & Korzhik, M. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering 2nd edn (Springer, 2017).

  8. Lecoq, P., Gektin, A. & Korzhik, M. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering 2nd edn, 1–41 (Springer, 2017).

  9. Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. A 809, 130–139 (2016).

    Article  ADS  CAS  Google Scholar 

  10. Kumar, V. & Luo, Z. A review on X-ray excited emission decay dynamics in inorganic scintillator materials. Photonics 8, 71 (2021).

    Article  CAS  Google Scholar 

  11. Zaffalon, M. L. et al. Extreme γ-ray radiation hardness and high scintillation yield in perovskite nanocrystals. Nat. Photonics 16, 860–868 (2022).

    Article  ADS  CAS  Google Scholar 

  12. Hajagos, T. J., Liu, C., Cherepy, N. J. & Pei, Q. B. High‐Z sensitized plastic scintillators: a review. Adv. Mater. 30, 1706956 (2018).

    Article  Google Scholar 

  13. Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics 15, 187–192 (2021).

    Article  ADS  CAS  Google Scholar 

  14. Ma, W. et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat. Mater. 21, 210–216 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wang, J. X. et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat. Photonics 16, 869–875 (2022).

    Article  ADS  CAS  Google Scholar 

  16. Birks, J. B. Scintillations from organic crystals: specific fluorescence and relative response to different radiations. Proc. Phys. Soc. A 64, 874 (1951).

    Article  ADS  Google Scholar 

  17. Brooks, F. D. Development of organic scintillators. Nucl. Instrum. Methods 162, 477–505 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Pan, Y. et al. High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons. Adv. Opt. Mater. 2, 510–515 (2014).

    Article  ADS  CAS  Google Scholar 

  19. Xu, Y., Xu, P., Hu, D. & Ma, Y. G. Recent progress in hot exciton materials for organic light-emitting diodes. Chem. Soc. Rev. 50, 1030–1069 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Turtos, R., Gundacker, S., Omelkov, S., Auffray, E. & Lecoq, P. Light yield of scintillating nanocrystals under X-ray and electron excitation. J. Lumin. 215, 116613 (2019).

    Article  CAS  Google Scholar 

  21. Mykhaylyk, V. B., Kraus, H. & Saliba, M. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures. Mater. Horiz. 6, 1740–1747 (2019).

    Article  CAS  Google Scholar 

  22. Yanagida, T., Watanabe, K. & Fujimoto, Y. Comparative study of neutron and gamma-ray pulse shape discrimination of anthracene, stilbene, and p-terphenyl. Nucl. Instrum. Methods Phys. Res. A 784, 111–114 (2015).

    Article  ADS  CAS  Google Scholar 

  23. Clairand, I. et al. Use of active personal dosemeters in interventional radiology and cardiology: tests in laboratory conditions and recommendations—ORAMED project. Radiat. Meas. 46, 1252–1257 (2011).

    Article  CAS  Google Scholar 

  24. Zhao, W. et al. Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. Nat. Commun. 9, 3044 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Xu, Y. et al. Highly efficient blue fluorescent OLEDs based on upper level triplet–singlet intersystem crossing. Adv. Mater. 31, 1807388 (2019).

    Article  Google Scholar 

  26. Burrows, H. D., Fernandes, M., Melo, J. S., Monkman, A. P. & Navaratnam, S. J. Characterization of the triplet state of tris(8-hydroxyquinoline)aluminium(III) in benzene solution. J. Am. Chem. Soc. 125, 15310–15311 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Hirata, S. Intrinsic analysis of radiative and room-temperature nonradiative processes based on triplet state intramolecular vibrations of heavy atom-free conjugated molecules toward efficient persistent room-temperature phosphorescence. J. Phys. Chem. Lett. 9, 4251–4259 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Ikeda, N., Koshioka, M., Masuhara, H. & Yoshihara, K. Picosecond dynamics of excited singlet states in organic microcrystals: diffuse reflectance laser photolysis study. Chem. Phys. Lett. 150, 452–456 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Merkel, P. B. & Dinnocenzo, J. P. Thermodynamic energies of donor and acceptor triplet states. J. Photochem. Photobiol. A 193, 110–121 (2008).

    Article  CAS  Google Scholar 

  30. Bachilo, S. β-Carotene triplet state absorption in the near-IR range. J. Photochem. Photobiol. A 91, 111–115 (1995).

    Article  CAS  Google Scholar 

  31. Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Reineke, S. & Baldo, M. A. Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 3797 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Giachino, G. G. & Kearns, D. R. Nature of the external heavy‐atom effect on radiative and nonradiative singlet–triplet transitions. J. Chem. Phys. 52, 2964–2974 (1970).

    Article  ADS  CAS  Google Scholar 

  34. Russo, P. (ed.) Handbook of X-ray Imaging: Physics and Technology (CRC, 2017).

  35. Auffray, E. et al. Crystal conditioning for high-energy physics detectors. Nucl. Instrum. Methods Phys. Res. A 486, 22–34 (2002).

    Article  ADS  CAS  Google Scholar 

  36. Ramudu, B. V., Reddy, C. J. & Madhu, V. Flash X-ray radiography technique to study the high velocity impact of soft projectile on E-glass/epoxy composite material. Def. Technol. 15, 216–226 (2019).

    Article  Google Scholar 

  37. Lecoq, P. Pushing the limits in time-of-flight PET imaging. IEEE Trans. Radiat. Plasma Med. Sci. 1, 473–485 (2017).

    Article  Google Scholar 

  38. Turtos, R. et al. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. J. Instrum. 11, P10015 (2016).

    Article  Google Scholar 

  39. Benitez, R. B., Ning, R., Conover, D. & Liu, S. H. Measurements of the modulation transfer function, normalized noise power spectrum and detective quantum efficiency for two flat panel detectors: a fluoroscopic and a cone beam computer tomography flat panel detectors. J. Xray Sci. Technol. 17, 279–293 (2009).

    PubMed  Google Scholar 

  40. Frisch M. J. et al. Gaussian09 (Gaussian Inc., 2009); http://www.gaussian.com/

  41. Becke, A. D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992).

    Article  ADS  CAS  Google Scholar 

  42. Kong, J. et al. Q‐Chem 2.0: a high‐performance ab initio electronic structure program package. J. Comput. Chem. 21, 1532–1548 (2000).

    Article  CAS  Google Scholar 

  43. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  44. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Turner, M. J. et al., CrystalExplorer17 (University of Western Australia, 2017).

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (2021YFB3201000 and 2018YFA0703200), the National Natural Science Foundation of China (62134003, 62074066, U23A20359, 62204092 and 12050005), the Chinese Academy of Sciences Project for Young Scientists in Basic Research (YSBR-024), the Fund for the Natural Science Foundation of Hubei Province (2021CFA036 and 2020CFA034), the Shenzhen Basic Research Program (JCYJ20200109115212546), the HCP Program of Huazhong University of Science and Technology, the Innovation Fund of Wuhan National Laboratory for Optoelectronics and the project funded by the China Postdoctoral Science Foundation (2023T160242), the Innovation Project of Optics Valley Laboratory (OVL2023ZD002). We acknowledge X. Li from Nanjing University of Science and Technology for their help with the X-ray-excited luminescence lifetime characterization, and Y. Gao from China University of Geosciences (Wuhan) for their discussion on the hot exciton emission mechanism.

Author information

Authors and Affiliations

Authors

Contributions

J.T. and G.N. supervised the whole project. G.N. conceived the idea. X.D., S.Z. and H.W. carried out most of the material characterization and device optimization. L.W., F.Y., K.-H.X., D.Z. and Z.X. performed the theoretical simulations and analysed the results. S.P. and J.X. carried out the transient absorption characterization. Z.S. performed the CTR measurements and analysed the results. Z.Z. and L.X. assisted in the data analysis. J.T., G.N. and X.D. analysed the results and wrote the paper; all authors commented on the manuscript.

Corresponding authors

Correspondence to Guangda Niu or Jiang Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Qibing Pei, Valery Bliznyuk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–31 and Tables 1–6.

Supplementary Video 1

The bubbling process in solution captured using the TPE-4Br scintillator screen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Zhao, S., Wang, L. et al. Efficient and ultrafast organic scintillators by hot exciton manipulation. Nat. Photon. 18, 162–169 (2024). https://doi.org/10.1038/s41566-023-01358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01358-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing