Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Future prospects in biologic therapy for systemic lupus erythematosus

Key Points

  • B cells, T cells and cytokines are key in the pathogenesis of systemic lupus erythematosus (SLE), and numerous biologic agents that target these cells and factors are in various stages of development

  • B-cell-directed biologic therapies include agents targeting CD20, CD19, CD22, CD40, and FcγRIIb, and some of these agents have already shown promising results

  • T-cell-directed biologic agents are aimed at promoting T cell tolerance, blocking T cell activation and differentiation, altering T cell trafficking, or generating regulatory T cells

  • Cytokine-directed biologic therapies include agents targeting BAFF, type I interferons, IL-6, and TNF, with an anti-BAFF monoclonal antibody (belimumab) already approved by the FDA for treatment of SLE

Abstract

With the approval by the FDA in 2011 of a biologic agent (namely belimumab) for the treatment of systemic lupus erythematosus (SLE), optimism abounds that additional biologic (and nonbiologic) agents will be similarly endorsed. Given the numerous immune-based abnormalities associated with SLE, the potential therapeutic targets for biologic agents and the candidate biologic approaches are also numerous. These approaches include: biologic agents that promote B-cell depletion, B-cell inactivation, or the generation of regulatory B cells; biologic agents that induce T-cell tolerance, block T-cell activation and differentiation, or alter T-cell trafficking; biologic agents that target the B-cell activating factor (BAFF) axis, type I interferons, IL-6 and its receptor, or TNF; and the adoptive transfer of ex vivo-generated regulatory T cells. Owing to the great heterogeneity inherent to SLE, no single approach should be expected to be effective in all patients. As our understanding of the pathogenic mechanisms of SLE continues to expand, additional therapeutic targets and approaches will undoubtedly be identified and should be fully exploited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective versus 'shotgun' targeting of B cells.
Figure 2: Mimicking of immune-complex-mediated inhibition of B cell activation by genetically engineered mAbs.
Figure 3: T cell inhibition at multiple stages.
Figure 4: The BAFF axis and its inhibition.

Similar content being viewed by others

References

  1. Shlomchik, M. J., Madaio, M. P., Ni, D., Trounstein, M. & Huszar, D. The role of B cells in lpr/lpr-induced autoimmunity. J. Exp. Med. 180, 1295–1306 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Jacob, N. et al. B cell and BAFF dependence of IFN-α-exaggerated disease in systemic lupus erythematosus-prone NZM 2328 mice. J. Immunol. 186, 4984–4993 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Chan, O. T. M., Hannum, L. G., Haberman, A. M., Madaio, M. P. & Shlomchik, M. J. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J. Exp. Med. 189, 1639–1647 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanz, I. & Lee, F. E.-H. B cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6, 326–337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cragg, M. S., Walshe, C. A., Ivanov, A. O. & Glennie, M. J. The biology of CD20 and its potential as a target for mAb therapy. Curr. Dir. Autoimmun. 8, 140–174 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Leandro, M. J., Edwards, J. C., Cambridge, G., Ehrenstein, M. R. & Isenberg, D. A. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum. 46, 2673–2677 (2002).

    Article  PubMed  Google Scholar 

  7. Looney, R. J. et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum. 50, 2580–2589 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Ramos-Casals, M., Díaz-Lagares, C. & Khamashta, M. A. Rituximab and lupus: good in real life, bad in controlled trials. Comment on the article by Lu et al. Arthritis Rheum. 61, 1281–1282 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Carson, K. R. et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113, 4834–4840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. US National Library of Medicine. ClinicalTrials.gov [online].

  13. US National Library of Medicine. ClinicalTrials.gov [online].

  14. US National Library of Medicine. ClinicalTrials.gov [online].

  15. Mysler, E. F. et al. Efficacy and safety of ocrelizumab, a humanized antiCD20 antibody, in patients with active proliferative lupus nephritis (LN): results from the randomized, double-blind phase III BELONG study. Arthritis Rheum. 62, S606–S607 (2010).

    Google Scholar 

  16. Tedder, T. F. et al. The CD19–CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6, 107–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Herbst, R. et al. B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J. Pharmacol. Exp. Ther. 335, 213–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Cardarelli, P. M. et al. A nonfucosylated human antibody to CD19 with potent B-cell depletive activity for therapy of B-cell malignancies. Cancer Immunol. Immunother. 59, 257–265 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. US National Library of Medicine. ClinicalTrials.gov [online].

  20. US National Library of Medicine. ClinicalTrials.gov [online].

  21. Nitschke, L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol. Rev. 230, 128–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Carnahan, J. et al. Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol. Immunol. 44, 1331–1341 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Dörner, T. et al. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res. Ther. 8, R74 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wallace, D. J. et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placeo-controlled multicentre study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202760.

  25. US National Library of Medicine. ClinicalTrials.gov [online].

  26. US National Library of Medicine. ClinicalTrials.gov [online].

  27. Heyman, B. Feedback regulation by IgG antibodies. Immunol. Lett. 88, 157–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Brownlie, R. J. et al. Distinct cell-specific control of autoimmunity and infection by FcγRIIb. J. Exp. Med. 205, 883–895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mackay, M. et al. Selective dysregulation of the FcγIIB receptor of memory B cells in SLE. J. Exp. Med. 203, 2157–2164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Su, K. et al. Expression profile of FcγRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J. Immunol. 178, 3272–3280 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Floto, R. A. et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat. Med. 11, 1056–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Veri, M.-C. et al. Therapeutic control of B cell activation via recruitment of Fcγ receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum. 62, 1933–1943 (2010).

    CAS  PubMed  Google Scholar 

  34. Depoil, D. et al. CD19 is essential for B cell activation by promoting B cell receptor–antigen microcluster formation in response to membrane-bound ligand. Nat. Immunol. 9, 63–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Chu, S. Y. et al. Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcγRIIb with Fc-engineered antibodies. Mol. Immunol. 45, 3926–3933 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Horton, H. M. et al. Antibody-mediated coengagement of FcγRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J. Immunol. 186, 4223–4233 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. EU Clinical Trials Register. Clinicaltrialsregister.eu [online].

  38. Current Controlled Trials. Controlled-trials.com [online].

  39. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Haas, K. M. et al. Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice. J. Immunol. 184, 4789–4800 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe, R. et al. Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J. Immunol. 184, 4801–4809 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals by are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Iwata, Y. et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blair, P. A. et al. Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J. Immunol. 182, 3492–3502 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. US National Library of Medicine. ClinicalTrials.gov [online].

  47. US National Library of Medicine. ClinicalTrials.gov [online].

  48. Mihara, M. et al. Immunologic abnormality in NZB/NZW F1 mice: thymus-independent occurrence of B cell abnormality and requirement for T cells in the development of autoimmune disease, as evidenced by an analysis of the athymic nude individuals. J. Immunol. 141, 85–90 (1988).

    CAS  PubMed  Google Scholar 

  49. Wofsy, D. & Seaman, W. E. Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J. Exp. Med. 161, 378–391 (1985).

    Article  CAS  PubMed  Google Scholar 

  50. Chesnutt, M. S. et al. Enhanced lymphoproliferation and diminished autoimmunity in CD4-deficient MRL/lpr mice. Clin. Immunol. Immunopathol. 87, 23–32 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Molina, J. F. et al. Coexistence of human immunodeficiency virus infection and systemic lupus erythematosus. J. Rheumatol. 22, 347–350 (1995).

    CAS  PubMed  Google Scholar 

  52. Diri, E., Lipsky, P. E. & Berggren, R. E. Emergence of lupus erythematosus after initiation of highly active antiretroviral therapy for human immunodeficiency virus infection. J. Rheumatol. 27, 2711–2714 (2000).

    CAS  PubMed  Google Scholar 

  53. Groom, J. R. et al. BAFF and MyD88 signals promote a lupus-like disease independent of T cells. J. Exp. Med. 204, 1959–1971 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crispin, J. C. et al. T cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6, 317–325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hiepe, F., Volk, H.-D., Apostoloff, E., von Baehr, R. & Emmrich, F. Treatment of severe systemic lupus erythematosus with anti-CD4 monoclonal antibody. Lancet 338, 1529–1530 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Keymeulen, B. et al. Insulin needs after anti-CD3 antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Freeman, G. J. et al. B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J. Immunol. 143, 2714–2722 (1989).

    CAS  PubMed  Google Scholar 

  60. Linsley, P. S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Razi-Wolf, Z., Galvin, F., Gray, G. & Reiser, H. Evidence for an additional ligand, distinct from B7, for the CTLA-4 receptor. Proc. Natl Acad. Sci. USA 90, 11182–11186 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Azuma, M. et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366, 76–79 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Hathcock, K. S. et al. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 262, 905–907 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Freeman, G. J. et al. Cloning of B7–2: a CTLA-4 counter-receptor that costimulated human T cell proliferation. Science 262, 909–911 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. Linsley, P. S. et al. Human B7–1 (CD80) and B7–2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Finck, B. K., Linsley, P. S. & Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science 265, 1225–1227 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Merrill, J. T. et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 3077–3087 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Furie, R. et al. Efficacy and safety of abatacept over 12 months in patients with lupus nephritis: results from a multicenter, randomized, double-blind, placebo-controlled phase II/III study. Arthritis Rheum. 63, S962–S963 (2011).

    Article  CAS  Google Scholar 

  70. Wofsy, D., Hillson, J. L. & Diamond, B. Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions. Arthritis Rheum. 64, 3660–3665 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. US National Library of Medicine. ClinicalTrials.gov [online].

  72. Buhlmann, J. E. et al. In the absence of a CD40 signal, B cells are tolerogenic. Immunity 2, 645–653 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Desai-Mehta, A., Lu, L., Ramsey-Goldman, R. & Datta, S. K. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J. Clin. Invest. 97, 2063–2073 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Koshy, M., Berger, D. & Crow, M. K. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J. Clin. Invest. 98, 826–837 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mohan, C., Shi, Y., Laman, J. D. & Datta, S. K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol. 154, 1470–1480 (1995).

    CAS  PubMed  Google Scholar 

  76. Early, G. S., Zhao, W. & Burns, C. M. Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand Black X New Zealand White mice. J. Immunol. 157, 3159–3164 (1996).

    CAS  PubMed  Google Scholar 

  77. Russell, J. Q. et al. Anti-CD40L accelerates renal disease and adenopathy in MRL-lpr mice in parallel with decreased thymocyte apoptosis. J. Immunol. 161, 729–739 (1998).

    CAS  PubMed  Google Scholar 

  78. Kalunian, K. C. et al. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154. Arthritis Rheum. 46, 3251–3258 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48, 719–727 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Akiba, H. et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 175, 2340–2348 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov [online].

  89. US National Library of Medicine. ClinicalTrials.gov [online].

  90. Usmani, N. & Goodfield, M. Efalizumab in the treatment of discoid lupus erythematosus. Arch. Dermatol. 143, 873–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Genentech. Press release: Genentech announces voluntary withdrawal of Raptiva from the U.S. market. Genentech [online].

  92. Kappos, L. et al. Natalizumab treatment for multiple sclerosis: updated recommendations for patient selection and monitoring. Lancet Neurol. 10, 745–758 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Y., Chen, Y.-C. M., Krummel, M. F. & Rosen, S. D. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J. Immunol. 189, 3914–3924 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Khattri, R., Cox, T., Yasayko, S.-A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Lee, J.-H. et al. Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology 117, 280–286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alvarado-Sánchez, B. et al. Regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun. 27, 110–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Valencia, X., Yarboro, C., Illei, G. & Lipsky, P. E. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J. Immunol. 178, 2579–2588 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Zheng, S. G. et al. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-β suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J. Immunol. 172, 1531–1539 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Scalapino, K. J., Tang, Q., Bluestone, J. A., Bonyhadi, M. L. & Daikh, D. I. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J. Immunol. 177, 1451–1459 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Lan, Q. et al. Polyclonal CD4+Foxp3+ Treg cells induce TGFβ-dependent tolerogenic dendritic cells that suppress the murine lupus-like syndrome. J. Mol. Cell Biol. 4, 409–419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov [online].

  105. Abdulahad, W. H. et al. FoxP3+ CD4+ T cells in systemic autoimmune diseases: the delicate balance between true regulatory T cells and effector Th-17 cells. Rheumatology 50, 646–656 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Jacob, N. & Stohl, W. Cytokine disturbances in systemic lupus erythematosus. Arthritis Res. Ther. 13, 228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moore, P. A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nardelli, B. et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97, 198–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Laabi, Y. et al. The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res. 22, 1147–1154 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. von Bülow, G.-U. & Bram, R. J. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 278, 138–141 (1997).

    Article  PubMed  Google Scholar 

  112. Thompson, J. S. et al. BAFF-R, a novel TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Yan, M. et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr. Biol. 11, 1547–1552 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Hahne, M. et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J. Exp. Med. 188, 1185–1190 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marsters, S. A. et al. Interaction of the TNF homologues BLyS and APRIL with the receptor homologues BCMA and TACI. Curr. Biol. 10, 785–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Yu, G. et al. APRIL and TALL-1 and receptors BCMA and TACI: system for regulating humoral immunity. Nat. Immunol. 1, 252–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Rennert, P. et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J. Exp. Med. 192, 1677–1683 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roschke, V. et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J. Immunol. 169, 4314–4321 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Dillon, S. R. et al. B-lymphocyte stimulator/a proliferation-inducing ligand heterotrimers are elevated in the sera of patients with autoimmune disease and are neutralized by atacicept and B cell maturation antigen-immunoglobulin. Arthritis Res. Ther. 12, R48 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Khare, S. D. et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc. Natl Acad. Sci. USA 97, 3370–3375 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Cheema, G. S., Roschke, V., Hilbert, D. M. & Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 44, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Zhang, J. et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J. Immunol. 166, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Petri, M. et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 58, 2453–2459 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Ota, M. et al. Regulation of the B cell receptor repertoire and self-reactivity by BAFF. J. Immunol. 185, 4128–4136 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Nikbakht, N., Migone, T.-S., Ward, C. P. & Manser, T. Cellular competition independent of BAFF/B lymphocyte stimulator results in low frequency of an autoreactive clonotype in mature polyclonal B cell compartments. J. Immunol. 187, 37–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Kayagaki, N. et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 17, 515–524 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Ramanujam, M. et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J. Clin. Invest. 116, 724–734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jacob, C. O. et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand Mixed 2328 mice deficient in BAFF. J. Immunol. 177, 2671–2680 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov [online].

  136. US National Library of Medicine. ClinicalTrials.gov [online].

  137. Bossen, C. et al. Mutation of the BAFF furin cleavage site impairs B-cell homeostasis and antibody response. Eur. J. Immunol. 41, 787–797 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Furie, R. A. et al. Blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus. Arthritis Rheum. 64, 4169 (2012).

    Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov [online].

  140. Genovese, M. C. et al. Tabalumab in rheumatoid arthritis patients with an inadequate response to methotrexate and naive to biologic therapy: a phase II, randomized, placebo-controlled trial. Arthritis Rheum. 65, 880–889 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Genovese, M. C. et al. Tabalumab, an anti-BAFF monoclonal antibody, in patients with active rheumatoid arthritis with an inadequate response to TNF inhibitors. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202775.

  142. Lilly. Press release: Lilly discontinues phase 3 rheumatoid arthritis program for tabalumab based on efficacy results. Lilly [online].

  143. US National Library of Medicine. ClinicalTrials.gov [online].

  144. US National Library of Medicine. ClinicalTrials.gov [online].

  145. Stein, J. V. et al. APRIL modulates B and T cell immunity. J. Clin. Invest. 109, 1587–1598 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jacob, C. O. et al. Dispensability of APRIL to the development of systemic lupus erythematosus in NZM 2328 mice. Arthritis Rheum. 64, 1610–1619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, Y. H., Ota, F., Kim-Howard, X., Kaufman, K. M. & Nath, S. K. APRIL polymorphism and systemic lupus erythematosus (SLE) susceptibility. Rheumatology 46, 1274–1276 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Stohl, W. et al. Inverse association between circulating APRIL levels and serologic and clinical disease activity in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 63, 1096–1103 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Morel, J. et al. Serum levels of tumour necrosis factor family members a proliferation-inducing ligand (APRIL) and B lymphocyte stimulator (BLyS) are inversely correlated in systemic lupus erythematosus. Ann. Rheum. Dis. 68, 997–1002 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Dall'Era, M. et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 56, 4142–4150 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Ginzler, E. M. et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res. Ther. 14, R33 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. US National Library of Medicine. ClinicalTrials.gov [online].

  153. Sasaki, Y., Casola, S., Kutok, J. L., Rajewski, K. & Schmidt-Supprian, M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J. Immunol. 173, 2245–2252 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Shulga-Morskaya, S. et al. B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J. Immunol. 173, 2331–2341 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Xu, S. & Lam, D.-P. B-cell maturation protein, which binds the tumor necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Mol. Cell. Biol. 21, 4067–4074 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. von Bülow, G.-U., van Deursen, J. M. & Bram, R. J. Regulation of the T-independent humoral response by TACI. Immunity 14, 573–582 (2001).

    Article  PubMed  Google Scholar 

  158. Yan, M. et al. Activation and accumulation of B cells in TACI-deficient mice. Nat. Immunol. 2, 638–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Lee, C. V. et al. Synthetic anti-BR3 antibodies that mimic BAFF binding and target both human and murine B cells. Blood 108, 3103–3111 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Lin, W. Y. et al. Anti-BR3 antibodies: a new class of B-cell immunotherapy combining cellular depletion and survival blockade. Blood 110, 3959–3967 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Jacob, C. O. et al. Development of systemic lupus erythematosus in NZM 2328 mice in the absence of any single BAFF receptor. Arthritis Rheum. 65, 1043–1054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Santiago-Raber, M.-L. et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J. Exp. Med. 197, 777–788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Agrawal, H. et al. Deficiency of type I IFN receptor in lupus-prone New Zealand Mixed 2328 mice decreases dendritic cell numbers and activation and protects from disease. J. Immunol. 183, 6021–6029 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Mathian, A., Weinberg, A., Gallegos, M., Banchereau, J. & Koutouzov, S. IFN-α induces early lethal lupus in preautoimmune (New Zealand Black X New Zealand White)F1 but not in BALB/c mice. J. Immunol. 174, 2499–2506 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Fairhurst, A.-M. et al. Systemic IFN-α drives kidney nephritis in B6.SLE123 mice. Eur. J. Immunol. 38, 1948–1960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ramanujam, M. et al. Interferon-α treatment of female (NZW X BXSB)F1 mice mimics some but not all features associated with the Yaa mutation. Arthritis Rheum. 60, 1096–1101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hron, J. D. & Peng, S. L. Type I IFN protects against murine lupus. J. Immunol. 173, 2134–2142 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kirou, K. A. et al. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Peterson, K. S. et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J. Clin. Invest. 113, 1722–1733 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nzeusseu Toukap, A. et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 56, 1579–1588 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Rönnblom, L. E., Alm, G. V. & Öberg, K. E. Possible induction of systemic lupus erythematosus by interferon-α treatment in a patient with a malignant carcinoid tumor. J. Intern. Med. 227, 207–210 (1990).

    Article  PubMed  Google Scholar 

  174. Niewold, T. B. & Swedler, W. I. Systemic lupus erythematosus arising during interferon-α therapy for cryoglobulinemic vasculitis associated with hepatitis C. Clin. Rheumatol. 24, 178–181 (2005).

    Article  PubMed  Google Scholar 

  175. Thacker, S. G. et al. Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. Arthritis Rheum. 64, 2975–2985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Denny, M. F. et al. Interferon-α promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood 110, 2907–2915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Somers, E. C. et al. Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients. PLoS ONE 7, e37000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Morimoto, A. M. et al. Association of endogenous anti-interferon-α autoantibodies with decreased interferon-pathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 2407–2415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yao, Y. et al. Neutralization of interferon-α/β-inducible genes and downstream effect in a phase I trial of an anti-interferon-α monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum. 60, 1785–1796 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Merrill, J. T. et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon α monoclonal antibody, in systemic lupus erythematosus: a phase I, muticentre, double-blind randomised study. Ann. Rheum. Dis. 70, 1905–1913 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Petri, M. et al. Sifalimumab, a human anti-interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 65, 1011–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tcherepanova, I., Curtis, M., Sale, M., Miesowicz, F. & Nicolette, C. Results of a randomized placebo controlled phase IA study of AGS-009, a humanized anti-interferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann. Rheum. Dis. 71 (Suppl. 3), 536 (2012).

    Google Scholar 

  183. McBride, J. M. et al. Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum. 64, 3666–3676 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Kalunian, K. et al. Efficacy and safety of rontalizumab (anti-interferon α) in SLE subjects with restricted immunosuppressant use: results of a randomized, double-blind placebo-controlled phase 2 study. Arthritis Rheum. 64, S1111 (2012).

    Article  CAS  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov [online].

  186. Mathian, A. et al. Active immunisation of human interferon α transgenic mice with a human interferon α kinoid induces antibodies that neutralise interferon α in sera from patients with systemic lupus erythematosus. Ann. Rheum. Dis. 70, 1138–1143 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. US National Library of Medicine. ClinicalTrials.gov [online].

  188. US National Library of Medicine. ClinicalTrials.gov [online].

  189. US National Library of Medicine. ClinicalTrials.gov [online].

  190. Cash, H. et al. Interleukin 6 (IL-6) deficiency delays lupus nephritis in MRL-Faslpr mice: The IL-6 pathway as a new therapeutic target in treatment of autoimmune kidney disease in systemic lupus erythematosus. J. Rheumatol. 37, 60–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Ryffel, B. et al. Interleukin-6 exacerbates glomerulonephritis in (NZB x NZM)F1 mice. Am. J. Pathol. 144, 927–937 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Finck, B. K., Chan, B. & Wofsy, D. Interleukin 6 promotes murine lupus in NZB/NZW F1 mice. J. Clin. Invest. 94, 585–591 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mihara, M., Takagi, N., Takeda, Y. & Ohsugi, Y. IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/W F1 mice. Clin. Exp. Immunol. 112, 397–402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Linker-Israeli, M. et al. Elevated levels of endogenous IL-6 in systemic lupus erythematosus: a putative role in pathogenesis. J. Immunol. 147, 117–123 (1991).

    CAS  PubMed  Google Scholar 

  195. Gröndal, G. et al. Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin. Exp. Rheumatol. 18, 565–570 (2000).

    PubMed  Google Scholar 

  196. Hirohata, S. et al. Accuracy of cerebrospinal fluid IL-6 testing for diagnosis of lupus psychosis. A multicenter retrospective study. Clin. Rheumatol. 28, 1319–1323 (2009).

    Article  PubMed  Google Scholar 

  197. Herrera-Esparza, R., Barbosa-Cisneros, O., Villalobos-Hurtado, R. & Avalos-Díaz, E. Renal expression of IL-6 and TNFα genes in lupus nephritis. Lupus 7, 154–158 (1998).

    Article  CAS  PubMed  Google Scholar 

  198. García-Hernández, F. J., González-León, R., Castillo-Palma, M. J., Ocaña-Medina, C. & Sánchez-Román, J. Tocilizumab for treating refractory haemolytic anaemia in a patient with systemic lupus erythematosus. Rheumatology 51, 1918–1919 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Kamata, Y. & Minota, S. Successful treatment of massive intractable pericardial effusion in a patient with systemic lupus erythematosus with tocilizumab. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2012-007834.

  200. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. US National Library of Medicine. ClinicalTrials.gov [online].

  202. US National Library of Medicine. ClinicalTrials.gov [online].

  203. Jacob, C. O. & McDevitt, H. O. Tumour necrosis factor-α in murine autoimmune 'lupus' nephritis. Nature 331, 356–358 (1988).

    Article  CAS  PubMed  Google Scholar 

  204. Gordon, C., Ranges, G. E., Greenspan, J. S. & Wofsy, D. Chronic therapy with recombinant tumor necrosis factor-α in autoimmune NZB/NZW F1 mice. Clin. Immunol. Immunopathol. 52, 421–434 (1989).

    Article  CAS  PubMed  Google Scholar 

  205. Kontoyiannis, D. & Kollias, G. Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor. Eur. J. Immunol. 30, 2038–2047 (2000).

    Article  CAS  PubMed  Google Scholar 

  206. Jacob, N. et al. Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. J. Immunol. 182, 2532–2541 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Studnicka-Benke, A., Steiner, G., Petera, P. & Smolen, J. S. Tumour necrosis factor α and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Br. J. Rheumatol. 35, 1067–1074 (1996).

    Article  CAS  PubMed  Google Scholar 

  208. Zhu, L.-J. et al. Altered expression of TNF-α signaling pathway proteins in systemic lupus erythematosus. J. Rheumatol. 37, 1658–1666 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Soforno, E. et al. Induction of systemic lupus erythematosus with tumor necrosis factor blockers. J. Rheumatol. 37, 204–205 (2010).

    Article  CAS  Google Scholar 

  210. Aringer, M., Graninger, W. B., Steiner, G. & Smolen, J. S. Safety and efficacy of tumor necrosis factor α blockade in systemic lupus erythematosus: an open-label study. Arthritis Rheum. 50, 3161–3169 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. Uppal, S. S., Hayat, S. J. & Raghupathy, R. Efficacy and safety of infliximab in active SLE: a pilot study. Lupus 18, 690–697 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Matsumura, R. et al. Anti-tumor necrosis factor therapy in patients with difficult-to-treat lupus nephritis: a prospective series of nine patients. Clin. Exp. Rheumatol. 27, 416–421 (2009).

    CAS  PubMed  Google Scholar 

  213. Aringer, M. et al. Adverse events and efficacy of TNF-α blockade with infliximab in patients with systemic lupus erythematosus: long-term follow-up of 13 patients. Rheumatology 48, 1451–1454 (2009).

    Article  CAS  PubMed  Google Scholar 

  214. US National Library of Medicine. ClinicalTrials.gov [online].

  215. US National Library of Medicine. ClinicalTrials.gov [online].

  216. Stohl, W. & Hilbert, D. M. The discovery and development of belimumab: the anti-BLyS–lupus connection. Nat. Biotechnol. 30, 69–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author's research is funded in part by a grant from the Alliance for Lupus Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Stohl.

Ethics declarations

Competing interests

The author declares that he is a member of a scientific advisory board for Eli Lilly, has consulted for Novartis, and has received preclinical grant support from Xencor.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stohl, W. Future prospects in biologic therapy for systemic lupus erythematosus. Nat Rev Rheumatol 9, 705–720 (2013). https://doi.org/10.1038/nrrheum.2013.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing