Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New therapies for systemic lupus erythematosus — past imperfect, future tense

An Author Correction to this article was published on 03 July 2019

This article has been updated

Abstract

The failure of many new, mostly biologic, drugs to meet their primary end points in double-blind clinical trials in patients with systemic lupus erythematosus (SLE) has caused a profound sense of disappointment among both physicians and patients. Arguably, the success of B cell depletion with rituximab in open-label studies and in patients with lupus nephritis in the USA and in difficult-to-treat patients with SLE in the UK, together with the approval of belimumab (which blocks B cell-activating factor (BAFF)) for use in patients with SLE and the recognition that clinical trial design can be improved, have given some cause for hope. However, changes to therapies in current use and the development of new approaches are urgently needed. The results of the latest studies investigating the use of several new approaches to treating SLE are discussed in this Review, including: fully humanized anti-CD20 and anti-CD19 monoclonal antibodies; inhibition of tyrosine-protein kinase BTK; CD40 ligand blockade; interfering with the presentation of antigen to autoreactive T cells using a peptide approach; a receptor decoy approach using an analogue of Fcγ receptor IIB; dual blockade of IL-12 and IL-23; and inhibition of Janus kinases.

Key points

  • The approval of new therapies, especially biologic drugs, for systemic lupus erythematosus (SLE) has been scarce in comparison to rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis.

  • Belimumab (FDA approved) and rituximab (National Health Service England approved) are available for use in some countries, although the cost (particularly of belimumab) mitigates their universal uptake.

  • Clinical trial design for SLE is problematic, and success in phase II trials is not often followed by success in phase III trials.

  • Several new approaches are under investigation that target B cells, cytokines or intracellular signalling pathways, providing hope that new therapies will be approved for SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Therapeutic targets in systemic lupus erythematosus.

Similar content being viewed by others

Change history

  • 03 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Bernatsky, S. et al. in Dubois’ Lupus Erythematosus and Related Syndromes 8th edn Ch. 57 (eds Wallace, D. J. & Hahn, B. H.) 666–675 (Elsevier, 2013).

  2. Carli, L. et al. Risk factors for osteoporosis and fragility fractures in patients with systemic lupus erythematosus. Lupus Sci. Med. 3, e000098 (2016).

    Article  CAS  Google Scholar 

  3. Goldblatt, F., Chambers, S., Rahman, A. & Isenberg, D. A. Serious infections in British patients with systemic lupus erythematosus: hospitalisations and mortality. Lupus 18, 682–689 (2009).

    Article  CAS  Google Scholar 

  4. Stojan, G. & Petri, M. Atherosclerosis in systemic lupus erythematosus. J. Cardiovasc. Pharmacol. 62, 255–262 (2013).

    Article  CAS  Google Scholar 

  5. Croca, S. C., Rodrigues, T. & Isenberg, D. A. Assessment of a lupus nephritis cohort over a 30-year period. Rheumatology 50, 1424–1430 (2011).

    Article  Google Scholar 

  6. Isenberg, D. A. & Rahman, A. Systemic lupus erythematosus in 2013. Taking a closer look at biologic therapy for SLE. Nat. Rev. Rheumatol. 10, 71–72 (2014).

    Article  Google Scholar 

  7. Touma, Z. & Gladman, D. D. Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments. Lupus Sci. Med. 4, e000239 (2017).

    Article  Google Scholar 

  8. Ciurtin, C. & Isenberg, D. (eds) Biologics in Rheumatology: New Developments, Clinical Uses and Health Implication (Nova Science Publishers, 2016).

  9. Nashi, E., Wang, Y. & Diamond, B. The role of B cells in lupus pathogenesis. Int. J. Biochem. Cell Biol. 42, 543–550 (2010).

    Article  CAS  Google Scholar 

  10. Chan, V. S., Tsang, H. H., Tam, R. C., Lu, L. & Lau, C. S. B cell-targeted therapies in systemic lupus erythematosus. Cell. Mol. Immunol. 10, 133–142 (2013).

    Article  CAS  Google Scholar 

  11. Ramos, L. & Isenberg, D. Rituximab: the lupus journey. Curr. Treat. Opt. Rheum. 1, 30–41 (2015).

    Article  Google Scholar 

  12. Carreira, P. L. & Isenberg, D. A. Recent developments in biologic therapies for the treatment of patients with systemic lupus erythematosus. Rheumatology 58, 382–387 (2019).

    Article  Google Scholar 

  13. McCarthy, E. M. et al. Short-term efficacy and safety of rituximab therapy in refractory systemic lupus erythematosus: results from the British Isles Lupus Assessment Group Biologics Register. Rheumatology 57, 410–479 (2018).

    Article  Google Scholar 

  14. Hahn, B. H. et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 64, 797–808 (2012).

    Article  Google Scholar 

  15. Bertsias, G. K. et al. Joint European League Against Rheumatism and European Renal Association–European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann. Rheum. Dis. 71, 1771–1782 (2012).

    Article  CAS  Google Scholar 

  16. NHS England. Clinical commissioning policy statement: rituximab for the treatment of systemic lupus erythematosus in adults. NHS England www.england.nhs.uk/wp-content/uploads/2018/07/Rituximab-for-the-treatment-of-systemic-lupus-erythematosus-in-adults.pdf (2013).

  17. Reddy, V., Martinez, L., Isenberg, D. A., Leandro, M. J. & Cambridge, G. Pragmatic treatment of patients with systemic lupus erythematosus with rituximab: long-term effects on serum immunoglobulins. Arthritis Care Res. 69, 857–866 (2017).

    Article  CAS  Google Scholar 

  18. Aguiar, R., Araújo, C., Martins-Coelho, G. & Isenberg, D. Use of rituximab in systemic lupus erythematosus: a single centre experience over 14 years. Arthritis Care Res. 69, 257–262 (2017).

    Article  CAS  Google Scholar 

  19. Hennessey, A., Lukawaska, J., Cambridge, G., Isenberg, D. & Leandro, M. AB0443 Infusion reactions to rituximab in systemic lupus erythematosus [abstract]. Ann. Rheum. Dis. 76 (Suppl. 2), 1205 (2017).

    Google Scholar 

  20. Furie, R. et al. A phase III randomized placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  Google Scholar 

  21. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  Google Scholar 

  22. Zhang, F. et al. A pivotal phase III, randomised, placebo-controlled study of belimumab in patients with systemic lupus erythematosus located in China, Japan and South Korea. Ann. Rheum. Dis. 77, 355–363 (2018).

    Article  CAS  Google Scholar 

  23. Stohl, W. et al. Efficacy and safety of subcutaneous belimumab in systemic lupus erythematosus: a fifty-two-week randomized, double-blind, placebo-controlled study. Arthritis Rheumatol. 69, 1016–1027 (2017).

    Article  CAS  Google Scholar 

  24. Iaccarino, L. et al. Clinical predictors of response and discontinuation of belimumab in patients with systemic lupus erythematosus in real life setting. Results of a large, multicentric, nationwide study. J. Autoimmun. 86, 1–8 (2018).

    Article  CAS  Google Scholar 

  25. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01639339 (2019).

  26. Feld, J. & Isenberg, D. Why and how should we measure disease activity and damage in lupus? Presse Med. 43, e151–e156 (2014).

    Article  Google Scholar 

  27. Isenberg, D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74, 2006–2015 (2015).

    Article  CAS  Google Scholar 

  28. Merrill, J. T. et al. Safety profile in SLE patients treated with atacicept in a phase IIb study (ADDRESS II) and its extension study [abstract]. Arthritis Rheumatol. 69 (Suppl. 10), 2585 (2017).

    Google Scholar 

  29. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00626197 (2017).

  30. Isenberg, D. A. et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 75, 323–331 (2016).

    Article  CAS  Google Scholar 

  31. Merrill, J. et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 332–340 (2016).

    Article  CAS  Google Scholar 

  32. Du, F. H., Mills, E. A. & Mao-Draayer, Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun. Highlights 8, 12 (2017).

    Article  Google Scholar 

  33. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00539838 (2017).

  34. Mysler, E. F. et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 65, 2368–2379 (2013).

    Article  CAS  Google Scholar 

  35. Reddy, V. et al. Obinutuzumab induces superior B cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology 56, 1227–1237 (2017).

    Article  CAS  Google Scholar 

  36. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02550652 (2019).

  37. Montillo, M. et al. Autoimmune hemolytic anemia and immune mediated thrombocytopenia in the phase III RESONATETM study of ibrutinib versus ofatumumab in relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma, including a case report. Blood 124, 5654 (2014).

    Google Scholar 

  38. Haarhaus, M. L., Svenungsson, E. & Gunnarsson, I. Ofatumumab treatment in lupus nephritis patients. Clin. Kidney J. 9, 552–555 (2016).

    Article  Google Scholar 

  39. Lavie, F. et al. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann. Rheum. Dis. 66, 700–703 (2007).

    Article  CAS  Google Scholar 

  40. Dall’Era, M. et al. Phase 2 trial of induction therapy with anti-CD20 (rituximab) followed by maintenance therapy with anti-BAFF (belimumab) in patients with active lupus nephritis [abstract]. Arthritis Rheumatol. 70 (Suppl. 10), 1870 (2018).

    Google Scholar 

  41. Kraaij, T. et al. PS7:129 synergetic B cell immunomodulation with rituximab and belimumab combination treatment in severe, refractory SLE [abstract]. Lupus Sci. Med. 5 (Suppl. 1), A99 (2018).

    Google Scholar 

  42. ISRCTN Registry. Belimumab after B cell depletion therapy as a new treatment for patients with systemic lupus erythematosus (SLE). ISRCTN.com http://www.isrctn.com/ISRCTN47873003 (2019).

  43. Merrill, J. T. et al. Top-line results of a phase 2, double-blind, randomized, placebo-controlled study of a reversible B cell inhibitor, XmAb®5871, in systemic lupus erythematous (SLE) [abstract]. Arthritis Rheumatol. 70 (Suppl. 10), L19 (2018).

    Google Scholar 

  44. López-Herrera, G. et al. Bruton’s tyrosine kinase — an integral protein of B cell development that also has an essential role in the innate immune system. J. Leukoc. Biol. 95, 243–250 (2014).

    Article  Google Scholar 

  45. Rankin, A. L. et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis. J. Immunol. 191, 4540–4550 (2013).

    Article  CAS  Google Scholar 

  46. Kil, L. P. et al. Btk levels set the threshold for B cell activation and negative selection of autoreactive B cells in mice. Blood 119, 3744–3756 (2012).

    Article  CAS  Google Scholar 

  47. Hutcheson, J. et al. Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus. Arthritis Res. Ther. 14, R243 (2012).

    Article  CAS  Google Scholar 

  48. Katsumato, T. et al. Safety, pharmacokinetics, and biomarker profile from phase 1 clinical trials of healthy volunteers treated with GDC-0853, a highly selective reversible oral Bruton’s tyrosine kinase (BTK) inhibitor [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 2622 (2016).

    Google Scholar 

  49. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02908100 (2019).

  50. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  CAS  Google Scholar 

  51. Koshy, M., Berger, D. & Crow, M. K. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J. Clin. Invest. 98, 826–837 (1996).

    Article  CAS  Google Scholar 

  52. Higuchi, T. et al. Cutting edge. Ectopic expression of CD40 ligand on B cells induces lupus-like autoimmune disease. J. Immunol. 168, 9–12 (2002).

    Article  CAS  Google Scholar 

  53. Early, G. S., Zhao, W. & Burns, C. M. Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand black × New Zealand white mice. Response correlates with the absence of an anti-antibody response. J. Immunol. 157, 3159–3164 (1996).

    CAS  PubMed  Google Scholar 

  54. Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serological activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48, 719–727 (2003).

    Article  CAS  Google Scholar 

  55. Kalunian, K. C. et al. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 3251–3258 (2002).

    Article  CAS  Google Scholar 

  56. Law, C.-L. et al. in Therapeutic Targets of the TNF Superfamily Ch. 2 (ed. Grewal, I. S.) 8–36 (Springer, 2009).

  57. Langer, F. et al. The role of CD40 in CD40L- and antibody-mediated platelet activation. Thromb. Haemost. 93, 1137–1146 (2005).

    Article  CAS  Google Scholar 

  58. Chamberlain, C. et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann. Rheum. Dis. 76, 1837–1844 (2017).

    Article  CAS  Google Scholar 

  59. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02804763 (2019).

  60. UCB. UCB and Biogen announce topline results from a phase 2b study of dapirolizumab pegol in systemic lupus erythematosus. UCB https://www.ucb.com/stories-media/Press-Releases/article/UCB-and-Biogen-Announce-Topline-Results-from-a-Phase-2b-Study-of-Dapirolizumab-Pegol-in-Systemic-Lupus-Erythematosus (2018).

  61. Hutloff, A. et al. ICOS is an inducible T cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  Google Scholar 

  62. Yang, J. H. et al. Expression and function of inducible costimulator on peripheral blood T cells in patients with systemic lupus erythematosus. Rheumatology 44, 1245–1254 (2005).

    Article  CAS  Google Scholar 

  63. Sullivan, B. A. et al. Inducible T cell co-stimulator ligand (ICOSL) blockade leads to selective inhibition of anti-KLH IgG responses in subjects with systemic lupus erythematosus. Lupus Sci. Med. 3, e000146 (2016).

    Article  CAS  Google Scholar 

  64. Daëron, M. Fc receptor biology. Annu. Rev. Immunol. 15, 203–234 (1997).

    Article  Google Scholar 

  65. Niederer, H. A., Clatworthy, M. R., Willcocks, L. C. & Smith, K. G. FcγRIIB, FcγRIIIB, and systemic lupus erythematosus. Ann. NY Acad. Sci. 1183, 69–88 (2010).

    Article  CAS  Google Scholar 

  66. Tillmans, S. et al. SM101, a novel recombinant, soluble, human FcγIIB receptor, in the treatment of systemic lupus erythematosus: results of a double-blind, placebo-controlled multicenter study [abstract]. Arthritis Rheum. 66 (Suppl. 10), 2833 (2014).

    Google Scholar 

  67. Monneaux, F., Lozano, J. M., Patarroyo, M. E., Briand, J. P. & Muller, S. T cell recognition and therapeutic effect of a phosphorylated synthetic peptide of the 70K snRNP protein administered in MR/lpr mice. Eur. J. Immunol. 33, 287–296 (2003).

    Article  CAS  Google Scholar 

  68. Page, N. et al. The spliceosomal phosphopeptide P140 controls the lupus disease by interacting with the HSC70 protein and via a mechanism mediated by γδ T cells. PLOS ONE 4, e5273 (2009).

    Article  Google Scholar 

  69. Zimmer, R., Scherbarth, H. R., Rillo, O. L., Gomez-Reino, J. J. & Muller, S. Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann. Rheum. Dis. 72, 1830–1835 (2013).

    Article  CAS  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02504645 (2019).

  71. ImmuPharma. Top line results of Lupuzor™ pivotal phase III trial. ImmuPharma https://www.immupharma.co.uk/top-line-results-lupuzor-pivotal-phase-iii-trial/ (2018).

  72. Figueiredo, M. Add-on Lupuzor fails primary goal but shows some positive results in phase 3 trial for SLE. Lupus News Today https://lupusnewstoday.com/2018/04/23/lupuzor-shows-promising-results-in-phase-3-study-in-lupus-patients (2018).

  73. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  Google Scholar 

  74. Bronson, P. G., Chaivorapol, C., Ortmann, W., Behrens, T. W. & Graham, R. R. The genetics of type I interferon in systemic lupus erythematosus. Curr. Opin. Immunol. 24, 530–537 (2012).

    Article  CAS  Google Scholar 

  75. Niewold, T. B. Interferon alpha-induced lupus: proof of principle. J. Clin. Rheumatol. 14, 131–132 (2008).

    Article  Google Scholar 

  76. de Weerd, N. A., Samarajiwa, S. A. & Hertzog, P. J. Type I interferon receptors: biochemistry and biological functions. J. Biol. Chem. 282, 20053–20057 (2007).

    Article  Google Scholar 

  77. Kalunian, K. C. et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 75, 196–202 (2016).

    Article  Google Scholar 

  78. Khamastha, M. et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo controlled study. Ann. Rheum. Dis. 75, 1909–1916 (2016).

    Article  Google Scholar 

  79. Furie, R. et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 69, 376–386 (2017).

    Article  CAS  Google Scholar 

  80. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02446899 (2018).

  81. AstraZeneca. Update on TULIP 1 phase III trial for anifrolumab in systemic lupus erythematosus. AstraZeneca https://www.astrazeneca.com/investor-relations/stock-exchange-announcements/2018/update-on-tulip-1-phase-iii-trial-for-anifrolumab-in-systemic-lupus-erythematosus-31082018.html (2018).

  82. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02547922 (2018).

  83. Ducreux, J. et al. Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon α kinoid phase I/II study. Rheumatology 55, 1901–1905 (2016).

    Article  CAS  Google Scholar 

  84. Lauwerys, B. R. et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid. Arthritis Rheum. 65, 447–456 (2013).

    Article  CAS  Google Scholar 

  85. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02665364 (2019).

  86. Yin, Q. et al. Comprehensive assessment of the association between genes on JAK–STAT pathway (IFIH1, TYK2, IL-10) and systemic lupus erythematosus: a meta-analysis. Arch. Dermatol. Res. 310, 711–728 (2018).

    Article  CAS  Google Scholar 

  87. Fragoulis, G. E., McInnes, I. B. & Siebert, S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology 58, i43–i54 (2019).

    Article  Google Scholar 

  88. Furumoto, Y. et al. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction. Arthritis Rheumatol. 69, 148–160 (2017).

    Article  CAS  Google Scholar 

  89. Wallace, D. J. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392, 222–231 (2018).

    Article  CAS  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03616964 (2019).

  91. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03616912 (2019).

  92. Kavanaugh, A. et al. Ustekinumab, an anti-Il-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann. Rheum. Dis. 73, 1000–1006 (2014).

    Article  CAS  Google Scholar 

  93. Leng, R. X. et al. IL-23: a promising therapeutic target for systemic lupus erythematosus. Arch. Med. Res. 41, 221–225 (2010).

    Article  CAS  Google Scholar 

  94. van Vollenhoven, R. F. et al. Efficacy and safety of ustekinumab an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 392, 1330–1339 (2018).

    Article  Google Scholar 

  95. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03517722 (2019).

  96. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02535689 (2018).

Download references

Acknowledgements

D.A.I. acknowledges the support of the Biomedical Research Centre award to University College Hospital and University College London.

Reviewer information

Nature Reviews Rheumatology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David A. Isenberg.

Ethics declarations

Competing interests

D.A.I. declares that he has received honoraria from AstraZeneca, Celgene, Eli Lilly, Merck Serono, Roche, UCB and XTL Biopharmaceuticals. G.M. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, G., Isenberg, D.A. New therapies for systemic lupus erythematosus — past imperfect, future tense. Nat Rev Rheumatol 15, 403–412 (2019). https://doi.org/10.1038/s41584-019-0235-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0235-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing