Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic alterations in autoimmune rheumatic diseases

Abstract

The potential roles of epigenetic alterations in the pathogenesis of autoimmune rheumatic diseases are raising great expectations among clinicians and researchers. Epigenetic mechanisms regulate gene expression and are sensitive to external stimuli, bridging the gap between environmental and genetic factors. Considerable evidence of epigenetic changes, particularly altered patterns of DNA methylation, exists in diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis. The importance of such changes in the pathology of rheumatic diseases has been demonstrated by examining the relationship between gene-specific methylation and SLE in monozygotic twins discordant for the disease, in whom genetic variability is excluded as a cause for discordance. Several studies have highlighted the importance of the tissue-specificity of DNA methylation changes, an aspect which—in contrast with genetic analysis—must be considered when designing epigenetic studies. Here I discuss the proposed mechanisms and implications of DNA methylation changes in the pathogenesis of autoimmune rheumatic diseases, the prospects for future epigenetic studies in rheumatology, the relevance of specific DNA methylation markers and the potential use of drugs with an epigenetic effect in the clinical management of these diseases.

Key Points

  • Autoimmune rheumatic disorders are complex diseases that involve genetic and environmental components—these facets are linked by epigenetic modifications, which control gene expression and are subject to environmental influences

  • Monozygotic twins discordant for autoimmune disease provide an opportunity to specifically study epigenetic changes that lead to the development of autoimmunity, because genetic variability is excluded

  • Candidate gene approaches have identified a small set of genes that undergo aberrant DNA demethylation and overexpression in systemic lupus erythematosus and rheumatoid arthritis

  • High-throughput approaches are necessary for screening epigenetic alterations in autoimmune disease, and it is essential to screen the specific tissue and cell types that are relevant to disease pathogenesis

  • Identification of cell-specific targets of epigenetic deregulation in autoimmune rheumatic disorders will provide clinical markers for diagnosis, disease progression and response to therapies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic and epigenetic components determine gene function in health and disease.
Figure 2: DNA methylation, histone modification and gene expression changes in autoimmune disease.
Figure 3: Complex interactions between cells of the immune system, their targets and products underlie the pathology of autoimmune rheumatic diseases and might be epigenetically deregulated.

Similar content being viewed by others

References

  1. Lie, B. A. & Thorsby, E. Several genes in the extended human MHC contribute to predisposition to autoimmune diseases. Curr. Opin. Immunol. 17, 526–531 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Delgado-Vega, A., Sánchez, E., Löfgren, S., Castillejo-López, C. & Alarcón-Riquelme, M. E. Recent findings on genetics of systemic autoimmune diseases. Curr. Opin. Immunol. 22, 698–705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Niewold, T. B. et al. Association of the IRF5 risk haplotype with high serum interferon-α activity in systemic lupus erythematosus patients. Arthritis Rheum. 58, 2481–2487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kariuki, S. N. et al. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-α in lupus patients in vivo. J. Immunol. 182, 34–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gourley, M. & Miller, F. W. Mechanisms of disease: Environmental factors in the pathogenesis of rheumatic disease. Nat. Clin. Pract. Rheumatol. 3, 172–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Klareskog, L., Padyukov, L., Lorentzen, J. & Alfredsson, L. Mechanisms of disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 2, 425–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Allis, C. D., Jenuwein, T. & Reinberg, D. in Epigenetics Ch. 3: Overview and Concepts (eds Allis, C. D., Jenuwein, T. & Reinberg, D.) 23–62 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2007).

    Google Scholar 

  9. Huertas, D., Sendra, R. & Muñoz, P. Chromatin dynamics coupled to DNA repair. Epigenetics 4, 31–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Corpet, A. & Almouzni, G. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol. 19, 29–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Sandelin, A. et al. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 8, 424–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Manero, G. Demethylating agents in myeloid malignancies. Curr. Opin. Oncol. 20, 705–710 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bruniquel, D. & Schwartz, R. H. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 4, 235–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ooi, S. K. & Bestor, T. H. The colorful history of active DNA demethylation. Cell 133, 1145–1148 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Fritz, E. L. & Papavasiliou, F. N. Cytidine deaminases: AIDing DNA demethylation? Genes Dev. 24, 2107–2114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201–1212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salvador, J. M. et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16, 499–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Allis, C. D. et al. New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Biancotto, C., Frigè, G. & Minucci, S. Histone modification therapy of cancer. Adv. Genet. 70, 341–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Kraus, W. L. & Wong, J. Nuclear receptor-dependent transcription with chromatin. Is it all about enzymes? Eur. J. Biochem. 269, 2275–2283 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Schwartz, Y. B. et al. Alternative epigenetic chromatin states of polycomb target genes. PLoS Genet. 6, e1000805 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bell, C. G. & Beck, S. The epigenomic interface between genome and environment in common complex diseases. Brief. Funct. Genomics 9, 477–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richly, H., Lange. M., Simboeck. E. & Di Croce, L. Setting and resetting of epigenetic marks in malignant transformation and development. Bioessays 32, 669–679 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8, 286–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 1, 239–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Konkel, M. K. & Batzer, M. A. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin. Cancer Biol. 20, 211–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39, 232–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Di Croce, L. Chromatin modifying activity of leukaemia associated fusion proteins. Hum. Mol. Genet. 14 (Suppl. 1), R77–R84 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ballestar, E. et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 22, 6335–6345 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cooper, G. S., Miller, F. W. & Pandey, J. P. The role of genetic factors in autoimmune disease: implications for environmental research. Environ. Health Perspect. 107 (Suppl. 5), 693–700 (1999).

    PubMed  PubMed Central  Google Scholar 

  39. Salvetti, M., Ristori, G., Bomprezzi, R., Pozzilli, P. & Leslie, R. D. Twins: mirrors of the immune system. Immunol. Today 21, 342–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  CAS  Google Scholar 

  41. Kaminsky, Z. A. et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 41, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Cezar, G. G. et al. Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod. 68, 1009–1014 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Young, L. E. et al. Conservation of IGF2-H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer. Mech. Dev. 120, 1433–1442 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    Article  PubMed  Google Scholar 

  45. Sinclair, K. D. et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl Acad. Sci. USA 104, 19351–19356 (2007).

    Article  PubMed  Google Scholar 

  46. Cannat, A. & Seligmann, M. Induction by isoniazid and hydrallazine of antinuclear factors in mice. Clin. Exp. Immunol. 3, 99–105 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Richardson, B. Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum. Immunol. 17, 456–470 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Cornacchia, E. et al. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 140, 2197–2200 (1988).

    CAS  PubMed  Google Scholar 

  49. Quddus, J. et al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 92, 38–53 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yung, R. L., Quddus, J., Chrisp, C. E., Johnson, K. J. & Richardson, B. C. Mechanism of drug-induced lupus. I. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo. J. Immunol. 154, 3025–3035 (1995).

    CAS  PubMed  Google Scholar 

  51. Blomgren, S. E., Condemi, J. J. & Vaughan, J. H. Procainamide-induced lupus erythematosus. Clinical and laboratory observations. Am. J. Med. 52, 338–348 (1972).

    Article  CAS  PubMed  Google Scholar 

  52. Richardson, B. C. et al. Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum. 35, 647–662 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Corvetta, A., Della Bitta, R., Luchetti, M. M. & Pomponio, G. 5-Methylcytosine content of DNA in blood, synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases. J. Chromatogr. 566, 481–491 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Huck, S. & Zouali, M. DNA methylation: a potential pathway to abnormal autoreactive lupus B cells. Clin. Immunol. Immunopathol. 80, 1–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Javierre, B. M. et al. Changes in the pattern of DNA methylation associated with twin discordance in systemic lupus erythematosus. Genome Res. 20, 170–179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fraga, M. F. & Esteller, M. Epigenetics and aging: the targets and the marks. Trends Genet. 23, 413–418 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilson, V. L. & Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science 220, 1055–1057 (1983).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, W. et al. Comparison of global DNA methylation profiles in replicative versus premature senescence. Life Sci. 83, 475–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Deng, C. et al. Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum. 44, 397–407 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Sawalha, A. H. et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun. 9, 368–378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tili, E., Michaille, J. J., Costinean, S., Croce, C. M. MicroRNAs, the immune system and rheumatic disease. Nat. Clin. Pract. Rheumatol. 4, 534–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Pan, W. et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184, 6773–6781 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Li, Y. et al. Overexpression of the growth arrest and DNA damage-induced 45α gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum. 62, 1438–1447 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Hsu, H.-C. et al. Inhibition of the catalytic function of activation-induced cytidine deaminase (AICDA) promotes apoptosis of germinal center B cells. Arthritis Rheum. doi:10.1002/art.30257.

  67. Lu, Q. et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum. 46, 1282–1291 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Oelke, K. et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum. 50, 1850–1860 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179, 6352–6358 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Kaplan, M. J., Lu, Q., Wu, A., Attwood, J. & Richardson, B. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J. Immunol. 172, 3652–3661 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Garaud, S. et al. IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation. J. Immunol. 182, 5623–5632 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Nile, C. J., Read, R. C., Akil, M., Duff, G. W. & Wilson, A. G. Methylation status of a single CpG site in the IL-6 promoter is related to IL-6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum. 58, 2686–2693 (2008).

    Article  PubMed  Google Scholar 

  73. Neidhart, M. et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum. 43, 2634–2647 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Karouzakis, E., Gay, R. E., Michel, B. A., Gay, S. & Neidhart, M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 3613–3622 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Stanczyk, J. et al. Altered expression of miR-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 63, 373–381 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lane, A. A. & Chabner, B. A. Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol. 27, 5459–5468 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Mishra, N. et al. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111, 539–552 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reilly, C. M. et al. Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. J. Immunol. 173, 4171–4178 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic onset juvenile idiopathic arthritis. Arthritis Rheum. doi:10.1002/art.30238.

  80. Dörner, T., Radbruch, A. & Burmester, G. R. B-cell-directed therapies for autoimmune disease. Nat. Rev. Rheumatol. 5, 433–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Petri, M. et al., Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum. 58, 2453–2459 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Sanz, I. & Lee, F. E. B cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6, 326–337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mazari, L., Ouarzane, M. & Zouali, M. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc. Natl Acad. Sci. USA 104, 6317–6322 (2007).

    Article  CAS  Google Scholar 

  84. Baranzini, S. E. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464, 1351–1356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mastronardi, F. G., Noor, A., Wood, D. D., Paton, T. & Moscarello, M. A. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J. Neurosci. Res. 85, 2006–2016 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Basu, D. et al. Stimulatory and inhibitory killer Ig-like receptor molecules are expressed and functional on lupus T cells. J. Immunol. 183, 3481–3487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ballestar, E. & Wolffe, A. P. Methyl-CpG-binding proteins. Targeting specific gene repression. Eur. J. Biochem. 268, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Dhasarathy, A. & Wade, P. A. The MBD protein family—reading an epigenetic mark? Mutat. Res. 647, 39–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. de la Cruz, X., Lois, S., Sánchez-Molina, S. & Martínez-Balbás, M. A. Do protein motifs read the histone code? Bioessays 27, 164–175 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E. Ballestar is supported by PI081346 (FIS) grant from the Spanish Ministry of Science and Innovation (MICINN) and 2009SGR184 grant from AGAUR (Catalan Government).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballestar, E. Epigenetic alterations in autoimmune rheumatic diseases. Nat Rev Rheumatol 7, 263–271 (2011). https://doi.org/10.1038/nrrheum.2011.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing