Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular disease in haemodialysis: role of the intravascular innate immune system

Key Points

  • Haemodialysis is a life-saving renal replacement modality for end-stage renal disease, but this therapy is associated with an increased risk of cardiovascular disease

  • The biomaterial surfaces that come into contact with blood in the extracorporeal circuit during haemodialysis trigger activation of the intravascular cascade systems

  • Generation of activation products from the intravascular cascade systems causes systemic inflammation involving blood cells and the vascular tree

  • The anaphylatoxins C3a and C5a, bradykinin, thrombin and factor Xa can induce activation of endothelial cells and the vascular wall

  • The thrombotic and inflammatory properties of these activation products lead to atherogenesis, which can progress to arteriosclerosis and cardiovascular disease

Abstract

Haemodialysis is a life-saving renal replacement modality for end-stage renal disease, but this therapy also represents a major challenge to the intravascular innate immune system, which is comprised of the complement, contact and coagulation systems. Chronic inflammation is strongly associated with cardiovascular disease (CVD) in patients on haemodialysis. Biomaterial-induced contact activation of proteins within the plasma cascade systems occurs during haemodialysis and initially leads to local generation of inflammatory mediators on the biomaterial surface. The inflammation is spread by soluble activation products and mediators that are generated during haemodialysis and transported in the extracorporeal circuit back into the patient together with activated leukocytes and platelets. The combined effect is activation of the endothelium of the cardiovascular system, which loses its anti-thrombotic and anti-inflammatory properties, leading to atherogenesis and arteriosclerosis. This concept suggests that maximum suppression of the intravascular innate immune system is needed to minimize the risk of CVD in patients on haemodialysis. A potential approach to achieve this goal is to treat patients with broad-specificity systemic drugs that target more than one of the intravascular cascade systems. Alternatively, 'stealth' biomaterials that cause minimal cascade system activation could be used in haemodialysis circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antithrombotic and anti-inflammatory properties of endothelial cells.
Figure 2: Overview of the complement system.
Figure 3: Activation of the contact system, kallikrein/kinin pathway and coagulation system.
Figure 4: Cascade system activation on a biomaterial surface.
Figure 5: Model of innate immunity activation as a cause of cardiovascular disease during dialysis.

Similar content being viewed by others

References

  1. Peters, S. A. et al. Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials. Nephrol. Dial. Transplant. 31, 978–984 (2016).

    Article  PubMed  Google Scholar 

  2. Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  3. Rogacev, K. S. et al. Haemodialysis-induced transient CD16+ monocytopenia and cardiovascular outcome. Nephrol. Dial. Transplant. 24, 3480–3486 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Mares, J. et al. Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response. Proteomics Clin. Appl. 4, 829–838 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Daugirdas, J. T. & Bernardo, A. A. Hemodialysis effect on platelet count and function and hemodialysis-associated thrombocytopenia. Kidney Int. 82, 147–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Schoorl, M., Schoorl, M., Nubé, M. J. & Bartels, P. C. M. Platelet depletion, platelet activation and coagulation during treatment with hemodialysis. Scand. J. Clin. Lab. Invest. 71, 240–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 9, S16–S23 (1998).

    CAS  PubMed  Google Scholar 

  9. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  10. Jardine, A. G., Gaston, R. S., Fellstrom, B. C. & Holdaas, H. Prevention of cardiovascular disease in adult recipients of kidney transplants. Lancet 378, 1419–1427 (2011).

    Article  PubMed  Google Scholar 

  11. Fellstrom, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holdaas, H. et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet 361, 2024–2031 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, W. et al. Prognostic role of C-reactive protein and interleukin-6 in dialysis patients: a systematic review and meta-analysis. J. Nephrol. 26, 243–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Sun, J. et al. Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. Clin. J. Am. Soc. Nephrol. 11, 1163–1172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tripepi, G., Mallamaci, F. & Zoccali, C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J. Am. Soc. Nephrol. 16 (Suppl. 1), S83–S88 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, S. D., Phillips, T. M., Khetpal, P. & Kimmel, P. L. Cytokine patterns and survival in haemodialysis patients. Nephrol. Dial. Transplant. 25, 1239–1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Zoccali, C., Tripepi, G. & Mallamaci, F. Dissecting inflammation in ESRD: do cytokines and C-reactive protein have a complementary prognostic value for mortality in dialysis patients? J. Am. Soc. Nephrol. 17, S169–S173 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Jofre, R., Rodriguez-Benitez, P., Lopez-Gomez, J. M. & Perez-Garcia, R. Inflammatory syndrome in patients on hemodialysis. J. Am. Soc. Nephrol. 17, S274–S280 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Akchurin, O. M. & Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 39, 84–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Cobo, G., Qureshi, A. R., Lindholm, B. & Stenvinkel, P. C-reactive protein: repeated measurements will improve dialysis patient care. Semin. Dial. 29, 7–14 (2016).

    Article  PubMed  Google Scholar 

  23. Betjes, M. G. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 9, 255–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Almasri, J. et al. Outcomes of vascular access for hemodialysis: a systematic review and meta-analysis. J. Vasc. Surg. 64, 236–243 (2016).

    Article  PubMed  Google Scholar 

  25. Carrero, J. J. & Stenvinkel, P. Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal. Clin. J. Am. Soc. Nephrol. 4 (Suppl. 1), S49–S55 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ismail, G., Dumitriu, H. T., Dumitriu, A. S. & Ismail, F. B. Periodontal disease: a covert source of inflammation in chronic kidney disease patients. Int. J. Nephrol. 2013, 515796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gillespie, I. A. et al. Factors precipitating erythropoiesis-stimulating agent responsiveness in a European haemodialysis cohort: case-crossover study. Pharmacoepidemiol. Drug Saf. 24, 414–426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frank, R. D. et al. Role of contact system activation in hemodialyzer-induced thrombogenicity. Kidney Int. 60, 1972–1981 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Horl, W. H. Hemodialysis membranes: interleukins, biocompatibility, and middle molecules. J. Am. Soc. Nephrol. 13 (Suppl. 1), S62–S71 (2002).

    CAS  PubMed  Google Scholar 

  30. Eckardt, K. U. et al. High cardiovascular event rates occur within the first weeks of starting hemodialysis. Kidney Int. 88, 1117–1125 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Friedrich, B. et al. Acute effects of hemodialysis on cytokine transcription profiles: evidence for C-reactive protein-dependency of mediator induction. Kidney Int. 70, 2124–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Molnar, M. Z., Ojo, A. O., Bunnapradist, S., Kovesdy, C. P. & Kalantar-Zadeh, K. Timing of dialysis initiation in transplant-naive and failed transplant patients. Nat. Rev. Nephrol. 8, 284–292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merchant, A. A., Quinn, R. R. & Perl, J. Dialysis modality and survival: does the controversy live on? Curr. Opin. Nephrol. Hypertens. 24, 276–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Reis, E. S., Falcao, D. A. & Isaac, L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand. J. Immunol. 63, 155–168 (2006).

    Article  CAS  Google Scholar 

  35. Takemoto, Y., Naganuma, T. & Yoshimura, R. Biocompatibility of the dialysis membrane. Contrib. Nephrol. 168, 139–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Engberg, A. E. et al. Prediction of inflammatory responses induced by biomaterials in contact with human blood using protein fingerprint from plasma. Biomaterials 36, 55–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, S. et al. Reciprocal relationship between the contact and the complement system activation on artificial polymers exposed to whole human blood. Biomaterials 77, 111–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Wanner, C., Amann, K. & Shoji, T. The heart and vascular system in dialysis. Lancet 388, 276–284 (2016).

    Article  PubMed  Google Scholar 

  39. Ghanavatian, S. et al. Subclinical atherosclerosis, endothelial function, and serum inflammatory markers in chronic kidney disease stages 3 to 4. Angiology 65, 443–449 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Annuk, M. et al. Oxidative stress markers in pre-uremic patients. Clin. Nephrol. 56, 308–314 (2001).

    CAS  PubMed  Google Scholar 

  41. Annuk, M. et al. Endothelial function, CRP and oxidative stress in chronic kidney disease. J. Nephrol. 18, 721–726 (2005).

    CAS  PubMed  Google Scholar 

  42. Liu, Y. et al. Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291, 451–459 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Stenvinkel, P. et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia — the good, the bad, and the ugly. Kidney Int. 67, 1216–1233 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Arici, M. & Walls, J. End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int. 59, 407–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Honda, H. et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am. J. Kidney Dis. 47, 139–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Annuk, M., Zilmer, M., Lind, L., Linde, T. & Fellstrom, B. Oxidative stress and endothelial function in chronic renal failure. J. Am. Soc. Nephrol. 12, 2747–2752 (2001).

    CAS  PubMed  Google Scholar 

  47. Soveri, I. et al. Improvement in central arterial pressure waveform during hemodialysis is related to a reduction in asymmetric dimethylarginine (ADMA) levels. Nephron. Clin. Pract. 106, c180–c186 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Taal, M. W. Arterial stiffness in chronic kidney disease: an update. Curr. Opin. Nephrol. Hypertens. 23, 169–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Agharazii, M. et al. Inflammatory cytokines and reactive oxygen species as mediators of chronic kidney disease-related vascular calcification. Am. J. Hypertens. 28, 746–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Hung, A. M., Ellis, C. D., Shintani, A., Booker, C. & Ikizler, T. A. IL-1beta receptor antagonist reduces inflammation in hemodialysis patients. J. Am. Soc. Nephrol. 22, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. The Cholesterol Treatment Trialists' (CTT) Collaboration et al. Impact of renal function on the effects of reducing LDL cholesterol with statin-based regimens: meta-analysis of individual data from 28 randomised trials. Lancet Diabetes Endocrinol. 4, 829–839 (2016).

  52. Woodruff, T. M., Nandakumar, K. S. & Tedesco, F. Inhibiting the C5-C5a receptor axis. Mol. Immunol. 48, 1631–1642 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Dinarello, C. A. An update on human interleukin-1: from molecular biology to clinical relevance. J. Clin. Immunol. 5, 287–297 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Varela, M. P. et al. Biocompatibility of hemodialysis membranes: interrelations between plasma complement and cytokine levels. Blood Purif. 19, 370–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Lhotta, K., Wurzner, R., Kronenberg, F., Oppermann, M. & Konig, P. Rapid activation of the complement system by cuprophane depends on complement component C4. Kidney Int. 53, 1044–1051 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Huang, Z., Gao, D., Letteri, J. J. & Clark, W. R. Blood-membrane interactions during dialysis. Semin. Dial. 22, 623–628 (2009).

    Article  PubMed  Google Scholar 

  57. Nilsson, B., Ekdahl, K. N., Mollnes, T. E. & Lambris, J. D. The role of complement in biomaterial-induced inflammation. Mol. Immunol. 44, 82–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Andersson, J., Ekdahl, K. N., Larsson, R., Nilsson, U. R. & Nilsson, B. C3 adsorbed to a polymer surface can form an initiating alternative pathway convertase. J. Immunol. 168, 5786–5791 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Tengvall, P., Askendal, A. & Lundström, I. Complement activation by IgG immobilized on methylated silicon. J. Biomed. Mater. Res. 31, 305–312 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Hulander, M. et al. Gradients in surface nanotopography used to study platelet adhesion and activation. Colloids Surf. B Biointerfaces 110, 261–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Andersson, J., Ekdahl, K. N., Lambris, J. D. & Nilsson, B. Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials 26, 1477–1485 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Chenoweth, D. E., Cheung, A. K. & Henderson, L. W. Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes. Kidney Int. 24, 764–769 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Ekdahl, K. N., Nilsson, B., Pekna, M. & Nilsson, U. R. Generation of iC3 at the interface between blood and gas. Scand. J. Immunol. 35, 85–91 (1992).

    Article  CAS  Google Scholar 

  64. Herzog, C. A., Mangrum, J. M. & Passman, R. Sudden cardiac death and dialysis patients. Semin. Dial. 21, 300–307 (2008).

    Article  PubMed  Google Scholar 

  65. Furebring, M., Hakansson, L., Venge, P. & Sjolin, J. C5a, interleukin-8 and tumour necrosis factor-alpha-induced changes in granulocyte and monocyte expression of complement receptors in whole blood and on isolated leukocytes. Scand. J. Immunol. 63, 208–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Ward, P. A. The harmful role of c5a on innate immunity in sepsis. J. Innate Immun. 2, 439–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Verschoor, A., Karsten, C. M., Broadley, S. P., Laumonnier, Y. & Kohl, J. Old dogs-new tricks: immunoregulatory properties of C3 and C5 cleavage fragments. Immunol. Rev. 274, 112–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Kourtzelis, I. et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood 116, 631–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reis, E. S. et al. Therapeutic C3 inhibitor Cp40 abrogates complement activation induced by modern hemodialysis filters. Immunobiology 220, 476–482 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Niederbichler, A. D. et al. An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J. Exp. Med. 203, 53–61 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Manthey, H. D. et al. Complement C5a inhibition reduces atherosclerosis in ApoE−/− mice. FASEB J. 25, 2447–2455 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Wezel, A. et al. Complement factor C5a induces atherosclerotic plaque disruptions. J. Cell. Mol. Med. 18, 2020–2030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koch, M. & Zernecke, A. The hemostatic system as a regulator of inflammation in atherosclerosis. IUBMB Life 66, 735–744 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Giri, S. & Jennings, L. K. The spectrum of thrombin in acute coronary syndromes. Thromb. Res. 135, 782–787 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Coughlin, S. R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Esmon, C. T. Targeting factor Xa and thrombin: impact on coagulation and beyond. Thromb. Haemost. 111, 625–633 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Hamad, O. A., Bäck, J., Nilsson, P. H., Nilsson, B. & Ekdahl, K. N. Platelets, complement, and contact activation: partners in inflammation and thrombosis. Adv. Exp. Med. Biol. 946, 185–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Terzuoli, E. et al. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation. PLoS ONE 9, e84358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marney, A. M., Ma, J., Luther, J. M., Ikizler, T. A. & Brown, N. J. Endogenous bradykinin contributes to increased plasminogen activator inhibitor 1 antigen following hemodialysis. J. Am. Soc. Nephrol. 20, 2246–2252 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heitsch, H. The therapeutic potential of bradykinin B2 receptor agonists in the treatment of cardiovascular disease. Expert Opin. Investig. Drugs 12, 759–770 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Feng, W. et al. Increased age-related cardiac dysfunction in bradykinin B2 receptor-deficient mice. J. Gerontol. A Biol. Sci. Med. Sci. 71, 178–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Leeb-Lundberg, L. M., Kang, D. S., Lamb, M. E. & Fathy, D. B. The human B1 bradykinin receptor exhibits high ligand-independent, constitutive activity. Roles of residues in the fourth intracellular and third transmembrane domains. J. Biol. Chem. 276, 8785–8792 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Duchene, J. & Ahluwalia, A. The kinin B1 receptor and inflammation: new therapeutic target for cardiovascular disease. Curr. Opin. Pharmacol. 9, 125–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Lizama, A. J. et al. Expression and bioregulation of the kallikrein-related peptidases family in the human neutrophil. Innate Immun. 21, 575–586 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Figueroa, C. D. et al. Kinin B1 receptor regulates interactions between neutrophils and endothelial cells by modulating the levels of Mac-1, LFA-1 and intercellular adhesion molecule-1. Innate Immun. 21, 289–304 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Papageorgiou, P. C., Chan, C. T., Yeo, E. L., Backx, P. H. & Floras, J. S. Coagulation factor XIIa-kinin-mediated contribution to hypertension of chronic kidney disease. J. Hypertens. 32, 1523–1533 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Ceravolo, G. S. et al. An interaction of renin-angiotensin and kallikrein-kinin systems contributes to vascular hypertrophy in angiotensin II-induced hypertension: in vivo and in vitro studies. PLoS ONE 9, e111117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ghebrehiwet, B., Kaplan, A. P., Joseph, K. & Peerschke, E. I. The complement and contact activation systems: partnership in pathogenesis beyond angioedema. Immunol. Rev. 274, 281–289 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Bjork, I. & Lindahl, U. Mechanism of the anticoagulant action of heparin. Mol. Cell. Biochem. 48, 161–182 (1982).

    Article  CAS  PubMed  Google Scholar 

  90. Dhondt, A. et al. Where and when to inject low molecular weight heparin in hemodiafiltration? A cross over randomised trial. PLoS ONE 10, e0128634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hemker, H. C. A century of heparin: past, present and future. J. Thromb. Haemost. 14, 2329–2338 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Gong, J. et al. Tubing loops as a model for cardiopulmonary bypass circuits: both the biomaterial and the blood-gas phase interfaces induce complement activation in an in vitro model. J. Clin. Immunol. 16, 222–229 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Larsson, M. et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci. Transl Med. 6, 222ra17 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Olsson, C. et al. Heparin-coated cardiopulmonary bypass circuits reduce circulating complement factors and interleukin-6 in paediatric heart surgery. Scand. Cardiovasc. J. 34, 33–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. François, K. et al. Avoidance of systemic anticoagulation during intermittent haemodialysis with heparin-grafted polyacrilonitrile membrane and citrate-enriched dialysate: a retrospective cohort study. BMC Nephrol. 15, 104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kessler, M. et al. Heparin-grafted dialysis membrane allows minimal systemic anticoagulation in regular hemodialysis patients: a prospective proof-of-concept study. Hemodial. Int. 17, 282–293 (2013).

    Article  PubMed  Google Scholar 

  97. Cheng, Y.-L. et al. Anticoagulation during haemodialysis using a citrate-enriched dialysate: a feasibility study. Nephrol. Dial. Transplant. 26, 641–646 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Persona, P. et al. Anticoagulation with citrate for hemodiafiltration in an acute bleeding trauma. Int. J. Artif. Organs 38, 343–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Ishihara, K. & Takai, M. Bioinspired interface for nanobiodevices based on phospholipid polymer chemistry. J. R. Soc. Interface 6 (Suppl. 3), S279–S291 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sakai, K. & Matsuda, M. in High-Performance Membrane Dialyzers. Contributions to Nephrology (eds Saito, A., Kawanishi, H., Yamashita, A. & Mineshima, M.) 11–22 (Karger, 2011).

    Book  Google Scholar 

  101. Zweigert, C., Neubauer, M. & Storr, M. in Comprehensive Membrane Science and Engineering (eds Drioli, E. & Giorno, L.) 351–387 (Elsevier, 2013).

    Google Scholar 

  102. Krummel, T. & Hannedouche, T. Clinical potentials of adsorptive dialysis membranes. Blood Purif. 35 (Suppl. 2), 1–4 (2013).

    Article  PubMed  Google Scholar 

  103. Saito, A., Kawanishi, H., Yamashita, A. & Mineshima, M. (eds) in High-Performance Membrane Dialyzers. Contributions to Nephrology 137–147 (Karger, 2011).

    Book  Google Scholar 

  104. Nakano, A. in High-Performance Membrane Dialyzers. Contributions to Nephrology (eds Saito, A., Kawanishi, H., Yamashita, A. & Mineshima, M) 164–171 (Karger, 2011).

    Book  Google Scholar 

  105. Bonomini, M. et al. Proteomics characterization of protein adsorption onto hemodialysis membranes. J. Proteome Res. 5, 2666–2674 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Kolár˘ová, H., Ambruzová, B., Svihálková Šindlerová, L., Klinke, A. & Kubala, L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm. 2014, 694312 (2014).

    Google Scholar 

  107. Yang, G. et al. Novel mechanisms of endothelial dysfunction in diabetes. J. Cardiovasc. Dis. Res. 1, 59–63 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ekdahl, K. N. et al. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol. Rev. 274, 245–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Trouw, L. A. & Daha, M. R. Role of complement in innate immunity and host defense. Immunol. Lett. 138, 35–37 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Bäck, J. et al. Distinctive regulation of contact activation by antithrombin and C1-inhibitor on activated platelets and material surfaces. Biomaterials 30, 6573–6580 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Janssen, B. J. et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505–511 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Deborah McClellan for editing the manuscript before submission and Osama Hamad (Uppsala University, Sweden) for excellent help with drafting the figures. The authors' work was supported by grant 2013-65X-05647-34-4 from the Swedish Research Council (VR), the European Community's Seventh Framework Programme under the grant agreement n°602699 (DIREKT), and faculty grants from the Linnæus University, Sweden.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, discussed the content, wrote the text and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Bo Nilsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Leukocytes

White blood cells that participate in immune defence.

Anaphylatoxins

C3a and C5a generated during complement activation. They promote inflammation by binding to receptors on phagocytes and mast cells.

Atherosclerotic events

Clinical events that occur as a result of atheromatous plaque.

Thromboembolic events

Clinical events caused by thrombi or emboli.

Autonomic neuropathy

Damage to nerves that control involuntary bodily functions.

Kallikrein/kinin system

A plasma protein system that generates the potent proinflammatory and angiogenic mediator bradykinin. The contact system is the initiation point for both the kallikrein/kinin system and the intrinsic branch of the coagulation system.

Polymorphonuclear leukocytes

Phagocytic leukocytes; the major cell type that mediates acute inflammation

Monocytes

Leukocytes that are recruited to inflammatory sites and differentiate into macrophages.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekdahl, K., Soveri, I., Hilborn, J. et al. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system. Nat Rev Nephrol 13, 285–296 (2017). https://doi.org/10.1038/nrneph.2017.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing