Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting innate immunity-driven inflammation in CKD and cardiovascular disease

Abstract

Mortality among patients with chronic kidney disease (CKD) is largely a consequence of cardiovascular disease (CVD) and is a particular concern given the increasing prevalence of CKD. Sterile inflammation triggered by activation of the innate immune system is an important driver of both CKD and associated CVD. Several endogenous mediators, including lipoproteins, crystals such as silica, urate and cholesterol crystals, or compounds released from dying cells interact with pattern recognition receptors expressed on a variety of different cell types, leading to the release of pro-inflammatory cytokines. Disturbed regulation of the haematopoietic system by damage-associated molecular patterns, or as a consequence of clonal haematopoiesis or trained innate immunity, also contributes to the development of inflammation. In observational and genetic association studies, inflammation is linked to the progression of CKD and cardiovascular events. In 2017, the CANTOS trial of canakinumab provided evidence that inhibiting inflammation driven by NLRP3–IL-1–IL-6-mediated signalling significantly reduced cardiovascular event rates in individuals with and without CKD. Other approaches to target innate immune pathways are now under investigation for their ability to reduce cardiovascular events and slow disease progression among patients with atherosclerosis and stage 3 and 4 CKD. This Review summarizes current understanding of the role of inflammation in the pathogenesis of CKD and its associated CVD, and how this knowledge may translate into novel therapeutics.

Key points

  • Sterile inflammation has an important role in the pathogenesis of chronic kidney disease (CKD) and cardiovascular disease (CVD).

  • Activation of the NLRP3 inflammasome by endogenous ligands represents an important driver of inflammation in both CKD and CVD.

  • CKD and CVD are associated with alterations in the haematopoietic system caused by changes in the haematopoietic niche, clonal haematopoiesis and trained innate immunity.

  • Epidemiological and genetic studies link inflammation with CKD progression and cardiovascular events.

  • Anti-inflammatory treatments that target the NLRP3 to IL-1 to IL-6 pathway of innate immunity, such as canakinumab and colchicine, reduce cardiovascular events, although use of colchicine may be limited for those with severe CKD.

  • Targeting inflammation represents an important therapeutic advance in CKD and CVD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways leading to activation of the NLRP3 inflammasome.
Fig. 2: Cellular signalling pathways of the cytokines IL-1α, IL-1β and IL-6.
Fig. 3: Regulation of the haematopoietic niche in the bone marrow and hierarchy of haematopoiesis.
Fig. 4: Inflammatory pathways in distinct kidney cell types that lead to kidney fibrosis and glomerular injury.
Fig. 5: Inflammation in the pathogenesis of atherosclerotic lesion formation.
Fig. 6: Trained innate immunity and clonal haematopoiesis.

Similar content being viewed by others

References

  1. USRDS. USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States (National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2020).

  2. Chronic Kidney Disease Prognosis Consortium et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

    Article  Google Scholar 

  3. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Speer, T., Ridker, P. M., von Eckardstein, A., Schunk, S. J. & Fliser, D. Lipoproteins in chronic kidney disease: from bench to bedside. Eur. Heart J. 42, 2170–2185 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Liuzzo, G. et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N. Engl. J. Med. 331, 417–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Amdur, R. L. et al. Inflammation and progression of CKD: the CRIC Study. Clin. J. Am. Soc. Nephrol. 11, 1546–1556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ridker, P. M. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J. 37, 1720–1722 (2016).

    Article  PubMed  Google Scholar 

  10. Emerging Risk Factors, C. et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

    Article  Google Scholar 

  11. Ridker, P. M. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 352, 20–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bohula, E. A. et al. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation 132, 1224–1233 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Oberg, B. P. et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 65, 1009–1016 (2004).

    Article  PubMed  Google Scholar 

  15. Keller, C. R. et al. Kidney function and markers of inflammation in elderly persons without chronic kidney disease: the health, aging, and body composition study. Kidney Int. 71, 239–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Shankar, A. et al. Markers of inflammation predict the long-term risk of developing chronic kidney disease: a population-based cohort study. Kidney Int. 80, 1231–1238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Batra, G. et al. Interleukin 6 and cardiovascular outcomes in patients with chronic kidney disease and chronic coronary syndrome. JAMA Cardiol. 6, 1440–1445 (2021).

    Article  PubMed  Google Scholar 

  18. Munoz Mendoza, J. et al. Inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors for death in chronic kidney disease. Kidney Int. 91, 711–719 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, J. et al. Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. Clin. J. Am. Soc. Nephrol. 11, 1163–1172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shlipak, M. G. et al. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293, 1737–1745 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Schunk, S. J. et al. Interleukin-1α is a central regulator of leukocyte-endothelial adhesion in myocardial infarction and in chronic kidney disease. Circulation 144, 893–908 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Ridker, P. M., Tuttle, K. R., Perkovic, V., Libby, P. & MacFadyen, J. G. Inflammation drives residual risk in chronic kidney disease: a CANTOS substudy. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehac444 (2022).

    Article  PubMed  Google Scholar 

  23. Zewinger, S., Schumann, T., Fliser, D. & Speer, T. Innate immunity in CKD-associated vascular diseases. Nephrol. Dial. Transpl. 31, 1813–1821 (2016).

    Article  CAS  Google Scholar 

  24. Stenvinkel, P. et al. Chronic inflammation in chronic kidney disease progression: role of Nrf2. Kidney Int. Rep. 6, 1775–1787 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim, H. J. & Vaziri, N. D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am. J. Physiol. Renal Physiol. 298, F662–F671 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. & Tang, X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585–597 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Boucher, D. et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215, 827–840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 e36 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Monteleone, M. et al. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 24, 1425–1433 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Dickens, L. S. et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol. Cell 47, 291–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gurung, P. et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192, 1835–1846 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Gaidt, M. M. et al. Human monocytes engage an alternative inflammasome pathway. Immunity 44, 833–846 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Zewinger, S. et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat. Immunol. 21, 30–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lukens, J. R. et al. RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature 498, 224–227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, B. et al. The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front. Immunol. 4, 391 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Di Paolo, N. C. & Shayakhmetov, D. M. Interleukin 1α and the inflammatory process. Nat. Immunol. 17, 906–913 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Afonina, I. S. et al. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α. Mol. Cell 44, 265–278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burzynski, L. C. et al. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin. Immunity 50, 1033–1042.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ridker, P. M. & Rane, M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res. 128, 1728–1746 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218–221 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Jacobsen, S. E. W. & Nerlov, C. Haematopoiesis in the era of advanced single-cell technologies. Nat. Cell Biol. 21, 2–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wei, Q. & Frenette, P. S. Niches for hematopoietic stem cells and their progeny. Immunity 48, 632–648 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. IL6R Genetics Consortium Emerging Risk Factors Collaboration et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

    Article  PubMed Central  Google Scholar 

  58. Schunk, S. J. et al. Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality. Eur. Heart J. 42, 1742–1756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dehghan, A. et al. Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation 123, 731–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cai, T. et al. Association of interleukin 6 receptor variant with cardiovascular disease effects of interleukin 6 receptor blocking therapy: a phenome-wide association study. JAMA Cardiol. 3, 849–857 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wetmore, J. B. et al. Interleukin-1 gene cluster polymorphisms predict risk of ESRD. Kidney Int. 68, 278–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Rocha, S. et al. Interleukin 6 (rs1800795) and pentraxin 3 (rs2305619) polymorphisms-association with inflammation and all-cause mortality in end-stage-renal disease patients on dialysis. Sci. Rep. 11, 14768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu, Z., Zekavat, S. M., Honigberg, M. C. & Natarajan, P. Genetic IL-6 signaling modifies incident coronary artery disease risk in chronic kidney disease. J. Am. Coll. Cardiol. 79, 415–416 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Speer, T. et al. Carbamylated low-density lipoprotein induces endothelial dysfunction. Eur. Heart J. 35, 3021–3032 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Schunk, S. J. et al. Guanidinylated apolipoprotein C3 (ApoC3) associates with kidney and vascular injury. J. Am. Soc. Nephrol. 32, 3146–3160 (2021).

    Article  CAS  Google Scholar 

  66. Zewinger, S. et al. HDL cholesterol is not associated with lower mortality in patients with kidney dysfunction. J. Am. Soc. Nephrol. 25, 1073–1082 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zewinger, S. et al. Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur. Heart J. 36, 3007–3016 (2015).

    CAS  PubMed  Google Scholar 

  68. Speer, T. et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 38, 754–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Zewinger, S. et al. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur. Heart J. 38, 1597–1607 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Jovanovich, A., Isakova, T. & Stubbs, J. Microbiome and cardiovascular disease in CKD. Clin. J. Am. Soc. Nephrol. 13, 1598–1604 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ross, R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Docherty, M. H., O’Sullivan, E. D., Bonventre, J. V. & Ferenbach, D. A. Cellular senescence in the kidney. J. Am. Soc. Nephrol. 30, 726–736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Schunk, S. J., Floege, J., Fliser, D. & Speer, T. WNT-beta-catenin signalling - a versatile player in kidney injury and repair. Nat. Rev. Nephrol. 17, 172–184 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Freund, A., Orjalo, A. V., Desprez, P. Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Anders, H. J. Of inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. J. Am. Soc. Nephrol. 27, 2564–2575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mulay, S. R. & Anders, H. J. Crystallopathies. N. Engl. J. Med. 374, 2465–2476 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Mulay, S. R. & Anders, H. J. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat. Rev. Nephrol. 13, 226–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Komada, T. et al. ASC in renal collecting duct epithelial cells contributes to inflammation and injury after unilateral ureteral obstruction. Am. J. Pathol. 184, 1287–1298 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, W. et al. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium. J. Immunol. 190, 1239–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Gong, W. et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. Am. J. Physiol. Renal Physiol. 310, F1081–F1088 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Komada, T. et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J. Am. Soc. Nephrol. 29, 1165–1181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, Y. et al. AIM2 inflammasome contributes to aldosterone-induced renal injury via endoplasmic reticulum stress. Clin. Sci. 136, 103–120 (2022).

    Article  CAS  Google Scholar 

  92. Lemos, D. R. et al. Interleukin-1beta activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leaf, I. A. et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Invest. 127, 321–334 (2017).

    Article  PubMed  Google Scholar 

  94. Pindjakova, J. et al. Interleukin-1 accounts for intrarenal Th17 cell activation during ureteral obstruction. Kidney Int. 81, 379–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Kopp, J. B. et al. Podocytopathies. Nat. Rev. Dis. Prim. 6, 68 (2020).

    Article  PubMed  Google Scholar 

  96. Daneshpajouhnejad, P., Kopp, J. B., Winkler, C. A. & Rosenberg, A. Z. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat. Rev. Nephrol. 18, 307–320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, J. et al. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J. Clin. Invest. 131, e136329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abais, J. M. et al. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid. Redox Signal. 18, 1537–1548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Abais, J. M. et al. Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. J. Biol. Chem. 289, 27159–27168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shah, A. et al. Thioredoxin-interacting protein deficiency protects against diabetic nephropathy. J. Am. Soc. Nephrol. 26, 2963–2977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shahzad, K. et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 87, 74–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Shahzad, K. et al. Caspase-1, but not caspase-3, promotes diabetic nephropathy. J. Am. Soc. Nephrol. 27, 2270–2275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shahzad, K. et al. Stabilization of endogenous Nrf2 by minocycline protects against Nlrp3-inflammasome induced diabetic nephropathy. Sci. Rep. 6, 34228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhuang, Y. et al. Albumin impairs renal tubular tight junctions via targeting the NLRP3 inflammasome. Am. J. Physiol. Renal Physiol. 308, F1012–F1019 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Zhuang, Y. et al. Mitochondrial dysfunction confers albumin-induced NLRP3 inflammasome activation and renal tubular injury. Am. J. Physiol. Renal Physiol. 308, F857–F866 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, D. et al. Megalin/cubulin-lysosome-mediated albumin reabsorption is involved in the tubular cell activation of NLRP3 inflammasome and tubulointerstitial inflammation. J. Biol. Chem. 290, 18018–18028 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Warnatsch, A., Ioannou, M., Wang, Q. & Papayannopoulos, V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Westerterp, M. et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation 138, 898–912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Freigang, S. et al. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat. Immunol. 14, 1045–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Stachon, P. et al. P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation 135, 2524–2533 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Kimura, Y. et al. Soluble uric acid promotes atherosclerosis via AMPK (AMP-activated protein kinase)-mediated inflammation. Arterioscler. Thromb. Vasc. Biol. 40, 570–582 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Karasawa, T. et al. Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler. Thromb. Vasc. Biol. 38, 744–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Orecchioni, M. et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science 375, 214–221 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Paulin, N. et al. Double-strand DNA sensing Aim2 inflammasome regulates atherosclerotic plaque vulnerability. Circulation 138, 321–323 (2018).

    Article  PubMed  Google Scholar 

  115. Dutta, P. et al. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells. Cell Stem Cell 16, 477–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van der Valk, F. M. et al. Increased haematopoietic activity in patients with atherosclerosis. Eur. Heart J. 38, 425–432 (2017).

    PubMed  Google Scholar 

  117. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barrett, T. J. et al. Chronic stress primes innate immune responses in mice and humans. Cell Rep. 36, 109595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hoyer, F. F. et al. Bone marrow endothelial cells regulate myelopoiesis in diabetes mellitus. Circulation 142, 244–258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Flynn, M. C. et al. Transient intermittent hyperglycemia accelerates atherosclerosis by promoting myelopoiesis. Circ. Res. 127, 877–892 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sreejit, G. et al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141, 1080–1094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sreejit, G. et al. Retention of the NLRP3 inflammasome-primed neutrophils in the bone marrow is essential for myocardial infarction-induced granulopoiesis. Circulation 145, 31–44 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Sager, H. B. et al. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation 132, 1880–1890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hettwer, J. et al. Interleukin-1β suppression dampens inflammatory leukocyte production and uptake in atherosclerosis. Cardiovasc. Res. 1093/cvr/cvab337 (2021).

  127. Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Song, W. M. & Colonna, M. Immune training unlocks innate potential. Cell 172, 3–5 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e119 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Arts, R. J. W. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89–100.e105 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Edgar, L. et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis. Circulation 144, 961–982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Temba, G. S. et al. Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes. Nat. Immunol. 22, 287–300 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Koelwyn, G. J. et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat. Med. 26, 1452–1458 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  Google Scholar 

  144. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sano, S. et al. JAK2 (V617F)-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic. Transl. Sci. 4, 684–697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pascual-Figal, D. A. et al. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J. Am. Coll. Cardiol. 77, 1747–1759 (2021).

    Article  PubMed  Google Scholar 

  147. Abplanalp, W. T. et al. Association of clonal hematopoiesis of indeterminate potential with inflammatory gene expression in patients with severe degenerative aortic valve stenosis or chronic postischemic heart failure. JAMA Cardiol. 5, 1170–1175 (2020).

    Article  PubMed  Google Scholar 

  148. Dorsheimer, L. et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 4, 25–33 (2019).

    Article  PubMed  Google Scholar 

  149. Assmus, B. et al. Clonal haematopoiesis in chronic ischaemic heart failure: prognostic role of clone size for DNMT3A- and TET2-driver gene mutations. Eur. Heart J. 42, 257–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Mas-Peiro, S. et al. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur. Heart J. 41, 933–939 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Abplanalp, W. T. et al. Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ. Res. 128, 216–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Vlasschaert, C. et al. Association of clonal hematopoiesis of indeterminate potential with worse kidney function and anemia in two cohorts of patients with advanced chronic kidney disease. J. Am. Soc. Nephrol. 33, 985–995 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Hung, A. M., Ellis, C. D., Shintani, A., Booker, C. & Ikizler, T. A. IL-1β receptor antagonist reduces inflammation in hemodialysis patients. J. Am. Soc. Nephrol. 22, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nowak, K. L. et al. IL-1 inhibition and vascular function in CKD. J. Am. Soc. Nephrol. 28, 971–980 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Nowak, K. L. et al. Interleukin-1 inhibition, chronic kidney disease-mineral and bone disorder, and physical function. Clin. Nephrol. 88, 132–143 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hung, A. M. et al. IL-1 inhibition and function of the HDL-containing fraction of plasma in patients with stages 3 to 5 CKD. Clin. J. Am. Soc. Nephrol. 14, 702–711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ridker, P. M. et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 391, 319–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Eur. Heart J. 39, 3499–3507 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Ridker, P. M., MacFadyen, J. G., Thuren, T. & Libby, P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur. Heart J. 41, 2153–2163 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Ridker, P. M. et al. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J. Am. Coll. Cardiol. 71, 2405–2414 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Solomon, D. H. et al. Relationship of interleukin-1β blockade with incident gout and serum uric acid levels: exploratory analysis of a randomized controlled trial. Ann. Intern. Med. 169, 535–542 (2018).

    Article  PubMed  Google Scholar 

  164. Schieker, M. et al. Effects of interleukin-1β inhibition on incident hip and knee replacement: exploratory analyses from a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 173, 509–515 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Vallurupalli, M. et al. Effects of interleukin-1β inhibition on incident anemia: exploratory analyses from a randomized trial. Ann. Intern. Med. 172, 523–532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kleveland, O. et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 37, 2406–2413 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Muller, N. et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J. Lipid Res. 56, 1034–1042 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. ZEUS - a research study to look at how ziltivekimab works compared to placebo in people with cardiovascular disease, chronic kidney disease and inflammation. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT05021835 (2022).

  171. Ganz, T. Anemia of inflammation. N. Engl. J. Med. 381, 1148–1157 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Pergola, P. E. et al. Ziltivekimab for treatment of anemia of inflammation in patients on hemodialysis: results from a phase 1/2 multicenter, randomized, double-blind, placebo-controlled trial. J. Am. Soc. Nephrol. 32, 211–222 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Deftereos, S. G. et al. Colchicine in cardiovascular disease: in-depth review. Circulation 145, 61–78 (2022).

    CAS  PubMed  Google Scholar 

  174. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Fiolet, A. T. L. et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur. Heart J. 42, 2765–2775 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Fernandez-Cuadros, M. E. et al. Colchicine-induced rhabdomyolysis: clinical, biochemical, and neurophysiological features and review of the literature. Clin. Med. Insights Arthritis Musculoskelet. Disord. 12, 1179544119849883 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Rossing, P. et al. Effect of bardoxolone methyl on the urine albumin-to-creatinine ratio in patients with type 2 diabetes and stage 4 chronic kidney disease. Kidney Int. 96, 1030–1036 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Rush, B. M. et al. Genetic or pharmacologic Nrf2 activation increases proteinuria in chronic kidney disease in mice. Kidney Int. 99, 102–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Robledinos-Anton, N., Fernandez-Gines, R., Manda, G. & Cuadrado, A. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid. Med. Cell Longev. 2019, 9372182 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lee, D. H., Wolstein, J. M., Pudasaini, B. & Plotkin, M. INK4a deletion results in improved kidney regeneration and decreased capillary rarefaction after ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 302, F183–F191 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Al-Douahji, M. et al. The cyclin kinase inhibitor p21WAF1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int. 56, 1691–1699 (1999).

    Article  CAS  PubMed  Google Scholar 

  188. Wolf, G., Schanze, A., Stahl, R. A., Shankland, S. J. & Amann, K. p27Kip1 Knockout mice are protected from diabetic nephropathy: evidence for p27Kip1 haplotype insufficiency. Kidney Int. 68, 1583–1589 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Braun, H. et al. Cellular senescence limits regenerative capacity and allograft survival. J. Am. Soc. Nephrol. 23, 1467–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl. Med. 13, eabb0203 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Goicoechea, M. et al. Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J. Am. Soc. Nephrol. 17, S231–S235 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Davignon, J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 109, III39–III43 (2004).

    Article  PubMed  Google Scholar 

  194. van der Aart-van der Beek, A. B., de Boer, R. A. & Heerspink, H. J. L. Kidney and heart failure outcomes associated with SGLT2 inhibitor use. Nat. Rev. Nephrol. 18, 294–306 (2022).

    Article  PubMed  Google Scholar 

  195. Kim, S. R. et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 11, 2127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Heerspink, H. J. L. et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 62, 1154–1166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Winiarska, A., Knysak, M., Nabrdalik, K., Gumprecht, J. & Stompor, T. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists. Int. J. Mol. Sci. 22, 10822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Kimber, C. et al. Randomized, placebo-controlled trial of rifaximin therapy for lowering gut-derived cardiovascular toxins and inflammation in CKD. Kidney360 1, 1206–1216 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Schulman, G. et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J. Am. Soc. Nephrol. 26, 1732–1746 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Mafra, D. et al. Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat. Rev. Nephrol. 17, 153–171 (2021).

    Article  PubMed  Google Scholar 

  203. Meijers, B., Evenepoel, P. & Anders, H. J. Intestinal microbiome and fitness in kidney disease. Nat. Rev. Nephrol. 15, 531–545 (2019).

    Article  PubMed  Google Scholar 

  204. Nicklas, J. M. et al. Effect of dietary composition of weight loss diets on high-sensitivity C-reactive protein: the randomized POUNDS LOST trial. Obesity 21, 681–689 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Li, J. et al. Dietary inflammatory potential and risk of cardiovascular disease among men and women in the US. J. Am. Coll. Cardiol. 76, 2181–2193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588–606 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat. Rev. Drug Discov. 20, 589–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.S., S.J.S. and D.F. are supported by the Deutsche Forschungsgemeinschaft (DFG, SFB TRR 219, Project-ID 322900939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimoteus Speer.

Ethics declarations

Competing interests

T.S. has received consulting and speaker fees from Amgen, Astellas, Bayer, GSK, Novartis, Novo Nordisk, Sanofi and Vifor. D.F. has received consulting and speaker fees from Amgen, Astellas, Bayer, Boehringer Ingelheim, GSK, Novartis, Novo Nordisk and Vifor. P.M.R. has received research grant support from Novartis, Kowa, Amarin and Pfizer, and has served as a consultant to Corvidia, Novartis, Flame, Agepha, AstraZeneca, Janssen, Civi Biopharm, SOCAR, Novo Nordisk, Upton, Omeicos, Health Outlook, Montai Health and Boehringer-Ingelheim. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Acute phase response

Non-specific reaction of the innate immune system to infections, inflammation and tissue injury.

Residual inflammatory risk

Persisting risk of cardiovascular events due to inflammation despite high-intensity lipid-lowering therapy.

Acute phase proteins

Cytokines, chemokines and other proteins released by leukocytes and other cell types during the acute phase response.

Haematopoietic niche

A spatiotemporal compartmentalization of the bone marrow, in which resident cells, such as mesenchymal stroma cells, endothelial cells, cells of the endosteal niche and macrophages, interact with haematopoietic stem cells to orchestrate their differentiation and fate.

Mendelian randomization analyses

Epidemiological methods to assess the association between single-nucleotide polymorphisms in distinct genes and outcomes to establish a causal effect between gene and phenotype.

Phenome-wide association analyses

Epidemiological methods to assess the association between single-nucleotide polymorphisms and a large number of outcomes or phenotypes.

Carbamylation

Post-translational modification of lysine residues within proteins induced by urea or myeloperoxidase-derived cyanate, leading to the formation of carbamylated lysine, which is also referred to as homocitrulline.

Guanidinylation

Post-translational modification of lysine residues within proteins induced by guanidine or urea, leading to the formation of guanidinylated lysine, which is also referred to as homoarginine.

Reverse cholesterol transport

Transport of cholesterol from peripheral tissues by high-density lipoprotein to the liver for biliary excretion.

Epithelial-to-mesenchymal transition

Differentiation of epithelial cells to mesenchymal cells such as (myo)fibroblasts, which represents an important step in tissue fibrosis.

Synbiotics

Dietary products or supplements containing probiotics (living microorganisms) and prebiotics (supplements modulating growth and/or metabolism of microorganisms).

Prebiotics

Dietary products or supplements that modulate growth and/or metabolism of microorganisms, such as bacteria.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speer, T., Dimmeler, S., Schunk, S.J. et al. Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat Rev Nephrol 18, 762–778 (2022). https://doi.org/10.1038/s41581-022-00621-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00621-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing