Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbes' roadmap to neurons

Key Points

  • Infections by microbes cause major diseases in the nervous system but are relatively neglected in the neuroscience community.

  • Mechanisms have evolved by which microbes can bypass the barriers that protect the nervous system and target neuronal populations in various regions of the brain.

  • Immune responses in the nervous system are generally not robust. This allows microbes to hide and survive in this relatively protective environment, but can also lead to rapid, life-threatening infections.

  • Knowledge on the fundamental cellular mechanisms used by microbes to propagate to the nervous system is important for developing host-directed drugs as adjunctive treatments with antimicrobial drugs.

  • Infections with microbes can have late-onset effects on nervous system functions, leading to behaviour changes and epilepsy. Research on the pathogenic events during these long latency periods could aid the development of strategies to prevent the appearance of these signs of disease.

  • Studies on the interactions between neurons and microbes also provide powerful tools to decipher basic neuronal functions and molecular sorting mechanisms.

Abstract

The nervous system is protected by barriers that restrict the invasion of pathogens. Nevertheless, mechanisms have evolved by which microbes can pass these barriers, enter and exit neurons and target various regions of the nervous system. In the brain, immune responses to pathogens are generally not robust, so microbes can hide and survive or, conversely, cause severe uncontrolled infections. Depending on their sites of entry and the regions that they target, microbes can cause diverse nervous system dysfunctions and even influence host behaviour to their own advantage. This Review discusses routes by which microbes can reach the nervous system and cause persistent or life-threatening infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nervous system entry sites for microbes.
Figure 2: White blood cells as carriers of microbes.
Figure 3: Axon-terminal uptake and transport of pathogens.
Figure 4: Olfactory route of neuroinvasion.
Figure 5: Non-cytolytic control of viral replication.

Similar content being viewed by others

References

  1. Griffin, D. E. Emergence and re-emergence of viral diseases of the nervous system. Prog. Neurobiol. 91, 95–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Niederkorn, J. Y. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nature Immunol. 7, 354–359 (2006).

    Article  CAS  Google Scholar 

  3. Charles, P. C., Guida, J. D., Brosnan, C. F. & Horwitz, M. S. Mouse adenovirus type-1 replication is restricted to vascular endothelum in the CNS of susceptible strains of mice. Virology 245, 216–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Maisner, A. Neufeld, J. & Weingart, H. Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb. Haemost. 102, 1014–1023 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Ebrahimi, C. M. et al. Penetration of the blood–brain barrier by Bacillus anthracis requires the pXO1-encoded BslA protein. J. Bacteriol. 191, 7165–7173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warfel, J. M. & D'Agnillo, F. Anthrax lethal toxin enhances IκB kinase activation and differentially regulates pro-inflammatory genes in human endothelium. J. Biol. Chem. 284, 2571–2577 (2009).

    Article  CAS  Google Scholar 

  7. Mankowski, J. L. et al. Neurovirulent simian immunodeficiency virus replicates productively in endothelial cells of the central nervous system in vivo and in vitro. J. Virol. 68, 8202–8208 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bobardt, M. D. et al. Contribution of proteoglycans to human immunodeficiency virus type 1 brain invasion. J. Virol. 78, 6567–6584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alfonso, P. V. et al. Alteration of blood–brain barrier integrity by retroviral infection. PLoS Pathog. 4, e1000205 (2008).

    Article  CAS  Google Scholar 

  10. Liou, M. L. & Hsu, C. Y. Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell Tissue Res. 293, 389–394 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Ludlow, M., Allen, I. & Schneider-Schaulis, J. Systemic spread of measles virus: overcoming the eipthelial and endothelial barriers. Thromb. Haemost. 102, 1050–1056 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Owens, T., Bechmann, I. & Engelhardt, B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropathol. Exp. Neurol. 67, 1113–1121 (2008).

    Article  PubMed  Google Scholar 

  14. Sorokin, L. The impact of the extracellular matrix on inflammation. Nature Rev. Immunol. 10, 712–723 (2010). This study provides a detailed biochemical explanation of how various laminins in basement membranes can form networks with differences in resistance to cell penetration. It includes extensive references to the nervous system.

    Article  CAS  Google Scholar 

  15. González-Scarano, F. & Martin-Garcia, J. The neuropathogenesis of AIDS. Nature Rev. Immunol. 5, 69–81 (2005).

    Article  CAS  Google Scholar 

  16. Muratori, C., Mangino, G., Affabris, E. & Federico, M. Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNFα in macrophages. Glia 58, 1893–1904 (2010).

    Article  PubMed  Google Scholar 

  17. Clay, C. C. et al. Neuroinvasion of fluorescein-positive monocytes in acute simian immunodeficiency virus infection. J. Virol. 81, 12040–12048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drevets, D. A. & Bronze, M. S. Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol. Med. Microbiol. 53, 151–165 (2008). This paper provides a good overview of mechanisms through which L. monocytogenes can spread to the nervous system of an infected individual.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, S. H. & Jong, A. Y. Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell. Microbiol. 3, 277–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Lambert, H. & Barragan, A. Modelling parasite dissemination: host cell subversion and immune evasion by Toxoplasma gondii. Cell. Microbiol. 12, 292–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Kristensson, K., Nygård, M., Bertini, G. & Bentivoglio, M. African trypanosome infections of the nervous system: parasite entry and effects on neuronal functions. Prog. Neurobiol. 91, 152–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Amin, D. N. et al. Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J. Infect. Dis. 200, 1556–1565 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med. 10, 1366–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, P. et al. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J. Virol. 82, 8978–8985 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davis, L. E. et al. West Nile virus neuroinvasive disease. Ann. Neurol. 60, 286–300 (2006).

    Article  PubMed  Google Scholar 

  26. Combes, V., El-Assaad, F., Faille, D., Jambou, R., Hunt, N. H. & Grau, G. E. R. Microvesiculation and cell interactions at the brain–endothelial interface in cerebral malaria pathogenesis. Prog. Neurobiol. 91, 140–151 (2010). The original report of the release of microparticles in cerebral malaria; microparticles could potentially provide a new target for adjunctive therapy.

    Article  CAS  PubMed  Google Scholar 

  27. Vogt, A. M. et al. Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathog. 2, 853–863 (2006).

    Article  CAS  Google Scholar 

  28. Luuginbühl, A., Nikolic, M., Beck, H. P., Wahlgren, M. & Lutz, H. U. Complement factor D, albumin, and immunoglobulin G anti-band 3 protein antibodies mimic serum in promoting resetting of malaria-infected red blood cells. Infect. Immun. 75, 1771–1777 (2007).

    Article  CAS  Google Scholar 

  29. Couper, K. N. et al. Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation. PloS Pathog. 6, e1000744 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mahnty, S. & Garcia, H. H. Cysticercosis and neurocysticercosis as pathogens affecting the nervous system. Prog. Neurobiol. 91, 172–184 (2010).

    Article  CAS  Google Scholar 

  31. Wang, I.-C., Fan, P.-C., Lu, S. -C, Fan, C. K. & Su, K.-E. Suppresion of host Th1-type granulomatous inflammation by Taenia solium metacestodes is related to down-regulation of osteopontin gene expression. Int. J. Parasitol. 38, 239–248 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Alvarez, J. I. & Teale, J. M. Multiple expression of matrix metalloproteinases in murine neurocysticercosis: implications for leukocyte migration through multiple central nervous system barriers. Brain Res. 1214, 145–158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Broadwell, R. D. & Sofroniew, M. V. Serum proteins bypass the blood–brain fluid barriers for extracellular entry to the central nervous system. Exp. Neurol. 120, 245–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Vu, K., Weksler, B., Romero, I., Couraud, P.-O. & Gelli. A. Immortalized human brain endothelial cell line HCMEC/D3 as a model of the blood–brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans. Eukaryotic Cell 8, 1803–1807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ring, A., Weiser, J. N. & Tuomanen, E. I. Pneumococcal trafficking across the blood–brain barrier molecular analysis of a novel bidirectional pathway. J. Clin. Invest. 102, 347–360 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thornton, J. A., Durick-Eder, K. & Tuomanen, E. I. Pneumococcal pathogenesis: “innate invasion” yet organ-specific damage. J. Mol. Med. 88, 103–107 (2010).

    Article  PubMed  Google Scholar 

  37. Coureuil, M. et al. Meningococcus hijacks a β2-adrenoceptor/β-arrestin pathway to cross brain microvasculature endothelium. Cell 143, 1149–1160 (2010). A recent paper on the mechanisms used by meningococcus bacteria to cross the BBB.

    Article  CAS  PubMed  Google Scholar 

  38. van Ginkel, F. W. et al. Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. Proc. Natl Acad. Sci. USA 100, 14363–14367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tenenbaum, T. et al. Polar bacterial invasion and translocation of Streptococcus suis across the blood–cerebrospinal fluid barrier in vitro. Cell. Microbiol. 11, 323–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Domínguez-Punaro, M. C. et al. Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J. Immunol. 179, 1842–1854 (2007).

    Article  PubMed  Google Scholar 

  41. Rudd, P. A., Cattaneo, R. & von Messling, V. Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J. Virol. 80, 9361–9370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Christensen, J. E., de Lemos, C., Moos, T., Christensen, J. P. & Thomsen, A. R. CXCL10 is the key ligand for CXCR3 on CD8+ effector T cells involved in immune surveillance of the lymphocytic choriomeningitis virus-infected central nervous system. J. Immunol. 176, 4235–4243 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Thomsen, A. R. Lymphocytic choriomeningitis virus-induced central nervous system disease: a model for studying the role of chemokines in regulating the acute antiviral CD8+ T-cell response in an immune-privileged organ. J. Virol. 83, 20–28 (2009). A detailed review of the role of chemokines for the attraction or retention of T cells in the brain during a viral infection.

    Article  CAS  PubMed  Google Scholar 

  44. Kappes, D. J. et al. Protection of CD3 δ knockout mice from lymphocytic choriomeningitis virus-induced immunopathology: implications for viral neuroinvasion. Virology 269, 248–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, H., Wood, C. & Petito, C. K. Comparisons of HIV-1 viral sequences in brain, choroid plexus and spleen: potential role of choroid plexus in the pathogenesis of HIV encephalitis. J. Neurovirol. 6, 498–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kristensson, K. & Olsson, Y. Diffusion pathways and retrograde axonal transport of protein tracers in peripheral nerves. Prog. Neurobiol. 1, 87–109 (1973).

    Article  CAS  PubMed  Google Scholar 

  47. Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–820 (2011).

    Article  CAS  Google Scholar 

  48. Radtke, K., Döhner, K. & Sodeik, B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell. Microbiol. 8, 367–400 (2006).

    Google Scholar 

  49. Dollery, S. J., Delboy, M. G. & Nicola, A. V. Low pH-induced conformational change in herpes simplex virus glycoprotein B. J. Virol. 84, 3759–3766 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salinas, S., Schiavo, G. & Kremer, E. J. A hitchhikers's guide to the nervous system: the complex journey of viruses and toxins. Nature Rev. Microbiol. 8, 645–655 (2010).

    Article  CAS  Google Scholar 

  51. Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klingen, Y., Conzelmann, K.-K. & Finke, S. Double-labeled rabies virus: live tracking of enveloped virus transport. J. Virol. 82, 237–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Lafon, M. Subversive neuroinvasive strategy of rabies virus. Arch. Virol. Suppl. 18, 149–159 (2004).

    Google Scholar 

  54. Salinas, S. et al. CAR-associated vesicular transport of an adenovirus in motor neuron axons. PloS Pathog. 5, e1000442 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ohka, S. et al. Receptor-dependent and -independent axonal retrograde transport of poliovirus in motor neurons. J. Virol. 83, 4995–5004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McGraw, H. M. & Friedman, H. M. Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites. J. Virol. 83, 4791–4799 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, J. I. et al. A herpesvirus encoded deubiquitinase is a novel neuroinvasive determinant. PloS Pathog. 5, e1000387 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Desai, P., DeLuca, N. A. & Person, S. Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology 247, 115–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. LaVail, J. H., Tauscher, A. N., Sucher, A., Harrabi, O. & Brandimarti, R. Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience 146, 974–985 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Miranda-Saksena, M. et al. Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde transport of tegument and envelope proteins and for viral exocytosis from growth cones and human fetal axons. J. Virol. 83, 3187–3199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coller, K. E. & Smith G. A. Two viral kinases are required for sustained long distance axon transport of a neuroinvasive herpesvirus. Traffic 9, 1458–1470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Curanovic´, D. & Enquist L. W. Directional transneuronal spread of α-herpesvirus infection. Future Virol. 4, 591–610 (2009). A comprehensive article on molecular mechanisms for the spread of various strains of herpesviruses in retrograde and anterograde directions in axons.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dons, L., Jin, Y., Kristensson K. & Rottenberg, M. Axonal transport of Listeria monocytogenes and nerve-cell-induced bacterial killing. J. Neurosci. Rev. 85, 2529–2537 (2007).

    Article  CAS  Google Scholar 

  64. Mohammed, A., Norrby, E. & Kristensson, K. Viruses and behavioural changes: a review of clinical and experimental findings. Rev. Neurosci. 4, 267–286 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Samuel, M. A., Wang, H., Siddharthan, V., Morrey, J. D. & Diamond, M. S. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc. Natl Acad. Sci. USA 104, 17140–17145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morrey, J. D. et al. Increased blood brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J. Gen. Virol. 89, 467–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Yamada, M., Nakamura, K., Yoshii, M., Kaku, Y. & Narita, M. Brain lesions induced by experimental intranasal infection of Japanese encephalitis virus in piglets. J. Comp. Path. 141, 156–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Das, T. et al. Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog. Neurobiol. 91, 121–129 (2009).

    Article  PubMed  CAS  Google Scholar 

  69. Kiderlen, A. F. & Laube, U. Balamuthia mandrillaris, an opportunistic agent of granulomatous amebic encephalitis, infects the brain via the olfactory nerve pathway. Parasitol. Res. 94, 49–52 (2004).

    Article  PubMed  Google Scholar 

  70. Jung, S. Y. et al. Gene silencing of nfa1 affects the in vitro cytotoxicity of Naegleria fowleri in murine macrophages. Mol. Biochem. Parasitol. 165, 87–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Serrano-Luna, J., Cervantes-Sandoval, I., Tsutsumi, V. & Shibayama, M. A biochemical comparison of proteases from pathogenic Naegleria fowleri and non-pathogenic Naegleria gruberi. J. Eukaryot. Microbiol. 54, 411–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Backström, E., Ljunggren, H.-G. & Kristensson K. NK cell-mediated destruction of influenza A virus-infected peripheral but not central neurones. Scand. J. Immunol. 65, 353–361 (2007).

    Article  PubMed  CAS  Google Scholar 

  73. Decman, V., Kinchington, P. R., Harvey, S. A. K. & Hendricks, R. L. Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J. Virol. 79, 10339–10347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neumann, H., Medana, I. M., Bauer, J. & Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25, 313–319 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Binder, G. K. & Griffin, D. E. Immune-mediated clearance of virus from the central nervous system. Microb. Infect. 5, 439–448 (2003).

    Article  CAS  Google Scholar 

  76. Kristensson, K. & Norrby, E. Persistence of RNA viruses in the central nervous system. Ann. Rev. Microbiol. 40, 159–184 (1986).

    Article  CAS  Google Scholar 

  77. Drögemüller, K. et al. Astrocyte gp130 expression is critical for the control of Toxoplasma encephalitis. J. Immunol. 181, 2683–2693 (2008).

    Article  PubMed  Google Scholar 

  78. Lafon, M. et al. Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J. Virol. 79, 15226–15237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bock, M. & Stoye, J. P. Endogenous retroviruses and the human germline. Curr. Opin. Genet. Dev. 10, 651–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Mi, S. et al. Syncytin is a captive retroviral envelope protein ionvolved in human placental morphogenesis. Nature 403, 785–789 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Buckley, P. T. et al. Cytoplasmic intron sequence-retaining transcripts can be dendritically targeted via ID element retrotransposons. Neuron 69, 877–884 (2011). This paper may open up a new field of research on how retroviral elements could play a fundamental part in neuronal functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prat, C. M. et al. Mutation of the protein kinase C site in Borna disease virus phosphoprotein abrogates viral interference with neuronal signaling and restores normal synaptic activity. PLoS Pathog. 5, 1–10 (2009).

    Article  CAS  Google Scholar 

  83. Viviani, B., Gardoni, F. & Marinovich, M. Cytokines and neuronal ion channels in health and disease. Int. Rev. Neurobiol. 82, 247–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Lamberton, P. H., Donnelly, C. A. & Webster, J. P. Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk. Parasitology 135, 1143–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Gulinello, M. et al. Acquired infection with Toxoplasma gondii in adult mice results in sensorimotor deficits but normal cognitive behavior despite widespread brain pathology. Microbes Infect. 12, 528–537 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bingham, J. & van der Merwe, M. Distribution of rabies antigen in brain material: determining the reliability of different regions of the brain for the fluorescent antibody test. J. Virol. Meth. 101, 85–94 (2002).

    Article  CAS  Google Scholar 

  87. Dellacasa-Lindberg, I., Hitziger, N. & Barragan, A. Localized recrudescence of Toxoplasma infections in the central nervous system of immunocompromised mice assessed by in vivo bioluminescence imaging. Microbes Infect. 9, 1291–1298 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Mansfield, K. L. et al. Tick-borne encephalitis virus — a review of an emerging zoonosis. J. Gen. Virol. 90, 1781–1794 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Murthy, J. M. K. & Prabhakar, S. Bacterial meningitis and epilepsy. Epilepsia 49, 8–12 (2008).

    Article  PubMed  Google Scholar 

  90. Misra, U. K., Tan, T. C. & Kalita, J. Viral encephalitis and epilepsy. Epilepsia 49, 13–18 (2008).

    Article  PubMed  Google Scholar 

  91. Idro, R., Ndiritu, M., Ogutu, B. & Mithwani, S. Burden, features, and outcome of neurological involvement in acute falciparum malaria in Kenyan children. JAMA 297, 2232–2240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Palmer, B. S. Meta-analyses of three case controlled studies and an ecological study into the link between cryptogenic epilepsy and chronic toxoplasmosis infection. Seizure 16, 657–663 (2007).

    Article  PubMed  Google Scholar 

  93. Quet, F. et al. Meta-analysis of the association between cysticercosis and epilepsy in Africa. Epilepsia 51, 830–837 (2010).

    Article  PubMed  Google Scholar 

  94. Vezzani, A., French, J., Bartfai, T. & Baram, T. Z. The role of inflammation in epilepsy. Nature Rev. Neurol. 7, 31–40 (2011).

    Article  CAS  Google Scholar 

  95. Stewart, K. A., Wilcox, K. S., Fujinami, R. S. & White, H. S. Theiler's virus infection chronically alters seizure susceptibility. Epilepsia 51, 1418–1428 (2010).

    Article  PubMed  Google Scholar 

  96. Vikman, K. S., Duggan, A. W. & Siddall, P. J. Interferon-γ induced disruption of GABAergic inhibition in the spinal dorsal horn in vivo. Pain 133, 18–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Pitkänen, A., Kharatishvili, I., Karhunen, H. & Lukasiuk, K. Epileptogenesis in experimental models. Epilepsia 48, 13–20 (2007).

    Article  PubMed  CAS  Google Scholar 

  98. Houweling, A. R., Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowsski, T. J. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb. Cortex 15, 834–845 (2005).

    Article  PubMed  Google Scholar 

  99. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Döring, A., Wild, M., Vestweber, D., Deutsch, U. & Engelhardt, B. E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J. Immunol. 179, 8470–8479 (2007).

    Article  PubMed  Google Scholar 

  101. Poteryaev, D., Datta, S., Ackema, K., Zerial, M. & Spang, A. Identification of the switch in early-to-late endosome transition. Cell 141, 497–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Deinhardt, K. et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52, 293–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Hirokawa, N., Niwa, S. & Tanaka, S. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–638 (2010). A comprehensive review on the molecular mechanisms for axonal transport. It also describes how disturbances to the transport machinery can cause distinct diseases.

    Article  CAS  PubMed  Google Scholar 

  104. Urbanska, E., Chambers, B. J., Ljunggren, H.-G., Norrby, E. & Kristensson. K. Spread of measles virus through axonal pathways into limbic structures in the brain of TAP1 -/- mice. J. Med. Virol. 52, 362–369 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The studies have been supported by grants from the Swedish Research Council (04480), European Commission (222887) and the US National Institutes of Health/Fogarty (5 R21 NS064888-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krister Kristensson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Pathway Interaction Database

Glossary

Neurovirulent

Refers to microbes that can replicate in the nervous system and cause functional disturbances.

Blood–brain barrier

A structure that protects the brain from non-selective passage of molecules and toxins in the blood while still allowing essential metabolites to cross. It is composed of tightly linked endothelial cells surrounded by astrocyte cell projections that are termed astrocytic endfeet.

Subarachnoid spaces

The space filled with cerebrospinal fluid between the arachnoid and the pia mater.

Tight junctions

Structures apposed to the plasma membrane of adjacent endothelial cells. They consist of a network of sealing strands that prevent passage of extracellular fluids; ZO1 is a tight junction protein that is often used as a marker.

Leptomeninges

The CNS is enclosed by three membranes — the outermost dura mater and the innermost pia mater with the arachnoid in between. The pia mater and the arachnoid are collectively called the leptomeninges.

Monocytes

Mononuclear cells that are derived from the bone marrow and circulate in the bloodstream. They pass into the body tissues, where they can differentiate into various types of macrophages.

Perivascular cuffs

Areas surrounding an inflamed blood vessel that contain inflammatory lymphocytes and are delimited by endothelial basement membrane on one side and parenchymal basement membrane on the other side.

Neurovascular units

Microdomains in the brain formed by astrocytes that integrate neural circuitry with local blood flow. Astrocytic processes form a bridge between cerebral vessels and synapses, and both are covered by astrocytic membranes.

Seizures

Transient abnormal, excessive or synchronous neuronal activity in the brain with clinical manifestations ranging from tonic spasm and clonic contractions of the muscles and convulsions to brief loss of awareness or psychic symptoms. Epilepsy signifies recurrent unprovoked seizures.

Circumventricular organs

Except for area portrema in the fourth ventricle, these organs are all located along the wall of the third ventricle and include the subfornicular organ, the laminar terminalis, the subcommisural organ, the median eminence and the neurohypophysis. They have fenestrated, leaky vessels whereby, for instance, axons projecting from hypothalamic neurons can secrete products into the bloodstream, but they can also serve as chemoreceptors to regulate homeostatic functions.

Perineurium

Layers of flattened cells that enclose fascicles of peripheral nerve fibres. The cells are joined by tight junctions, which prevent the diffusion of macromolecules into the enclosed nerve fibres.

Endoneural vessels

Vessels within the endoneurium (all connective tissue elements and spaces enclosed by the perineurium) that have tight junctions between adjacent endothelial cells to prevent the diffusion of macromolecules from the blood into the endoneural spaces.

Capsids

(From the Latin capsa, meaning box.) Protein shells that directly package viral DNA or RNA. The term nucleocapsid is sometimes used to describe the shell and its nucleic acid content.

Peripheral ganglia

Ganglia of nerve cell bodies in the peripheral nervous system encompassing dorsal root ganglia and cranial ganglia of the somatic division as well as ganglia of the autonomic division.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensson, K. Microbes' roadmap to neurons. Nat Rev Neurosci 12, 345–357 (2011). https://doi.org/10.1038/nrn3029

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3029

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology