Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Prediction of antibiotic resistance: time for a new preclinical paradigm?

Abstract

Predicting the future is difficult, especially for evolutionary processes that are influenced by numerous unknown factors. Still, this is what is required of drug developers when they assess the risk of resistance arising against a new antibiotic candidate during preclinical development. In this Opinion article, we argue that the traditional procedures that are used for the prediction of antibiotic resistance today could be markedly improved by including a broader analysis of bacterial fitness, infection dynamics, horizontal gene transfer and other factors. This will lead to more informed preclinical decisions for continuing or discontinuing the development of drug candidates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of resistance.
Figure 2: Factors that determine the risk of evolution of antibiotic resistance.
Figure 3: The in vitro rate of resistance mutations does not correlate with the burden of resistance in the clinic.
Figure 4: Examining the potential of horizontal gene transfer.

Similar content being viewed by others

References

  1. [No authors listed.] Tackling drug-resistant infections globally: final report and recommendations (review on antimicrobial resistance, 2016). AMR Review https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (2016).

  2. Gilmore, M. S., Lebreton, F. & van Schaik, W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr. Opin. Microbiol. 16, 10–16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. zur Wiesch, P. A., Kouyos, R., Engelstädter, J., Regoes, R. R. & Bonhoeffer, S. Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect. Dis. 11, 236–247 (2011).

    Article  PubMed  Google Scholar 

  4. Smith, M. R. & Wood, W. B. An experimental analysis of the curative action of penicillin in acute bacterial infections. III. The effect of suppuration upon the antibacterial action of the drug. J. Exp. Med. 103, 509–522 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palaci, M. et al. Cavitary disease and quantitative sputum bacillary load in cases of pulmonary tuberculosis. J. Clin. Microbiol. 45, 4064–4066 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Feldman, W. E. Concentrations of bacteria in cerebrospinal fluid of patients with bacterial meningitis. J. Pediatr. 88, 549–552 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Canetti, G. Present aspects of bacterial resistance in tuberculosis. Am. Rev. Respir. Dis. 92, 687–703 (1965).

    CAS  PubMed  Google Scholar 

  8. Canetti, G. Dynamic aspects of the pathology and bacteriology of tuberculous lesions. Am. Rev. Tuberc. 74, 13–21 (1956).

    CAS  PubMed  Google Scholar 

  9. Foster, P. L. Methods for determining spontaneous mutation rates. Methods Enzymol. 409, 195–213 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tubulekas, I., Buckingham, R. H. & Hughes, D. Mutant ribosomes can generate dominant kirromycin resistance. J. Bacteriol. 173, 3635–3643 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lofton, H., Pränting, M., Thulin, E. & Andersson, D. I. Mechanisms and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. PLoS ONE 8, e68875 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nilsson, A. I., Berg, O. G., Aspevall, O., Kahlmeter, G. & Andersson, D. I. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob. Agents Chemother. 47, 2850–2858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thulin, E., Sundqvist, M. & Andersson, D. I. Amdinocillin (mecillinam) resistance mutations in clinical isolates and laboratory-selected mutants of Escherichia coli. Antimicrob. Agents Chemother. 59, 1718–1727 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Drusano, G. L., Louie, A., MacGowan, A. & Hope, W. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 1. Antimicrob. Agents Chemother. 60, 1183–1193 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Drusano, G. L., Hope, W., MacGowan, A. & Louie, A. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 2. Antimicrob. Agents Chemother. 60, 1194–1201 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Chancey, S. T., Zähner, D. & Stephens, D. S. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 7, 959–978 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Chevereau, G. et al. Quantifying the determinants of evolutionary dynamics leading to drug resistance. PLoS Biol. 13, e1002299 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Hughes, D. & Andersson, D. I. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat. Rev. Genet. 16, 459–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Brandis, G., Pietsch, F., Alemayehu, R. & Hughes, D. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 70, 680–685 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. O'Neill, A. J., Huovinen, T., Fishwick, C. W. G. & Chopra, I. Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob. Agents Chemother. 50, 298–309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bottger, E. C., Springer, B., Pletschette, M. & Sander, P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nat. Med. 4, 1343–1344 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46, 1204–1211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shcherbakov, D. et al. Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol. Microbiol. 77, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Foucault, M.-L., Depardieu, F., Courvalin, P. & Grillot-Courvalin, C. Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc. Natl Acad. Sci. USA 107, 16964–16969 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12, 465–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Gullberg, E., Albrecht, L. M., Karlsson, C., Sandegren, L. & Andersson, D. I. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio 5, e01918-14 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Oz, T. et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol. Biol. Evol. 31, 2387–2401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Visser, J. A. G. M. & Krug, J. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Kondrashov, D. A. & Kondrashov, F. A. Topological features of rugged fitness landscapes in sequence space. Trends Genet. 31, 24–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Brandis, G. & Hughes, D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J. Antimicrob. Chemother. 68, 2493–2497 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Brandis, G., Wrande, M., Liljas, L. & Hughes, D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol. Microbiol. 85, 142–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Lannergård, J. et al. Genetic complexity of fusidic acid-resistant small colony variants (SCV) in Staphylococcus aureus. PLoS ONE 6, e28366 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Marcusson, L. L., Frimodt-Møller, N. & Hughes, D. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog. 5, e1000541 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Schrag, S. J., Perrot, V. & Levin, B. R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. Biol. Sci. 264, 1287–1291 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Angst, D. C. & Hall, A. R. The cost of antibiotic resistance depends on evolutionary history in Escherichia coli. BMC Evol. Biol. 13, 163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Komp Lindgren, P., Marcusson, L. L., Sandvang, D., Frimodt-Møller, N. & Hughes, D. Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob. Agents Chemother. 49, 2343–2351 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Trindade, S. et al. Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet. 5, e1000578 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Björkman, J., Samuelsson, P., Andersson, D. I. & Hughes, D. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol. Microbiol. 31, 53–58 (1999).

    Article  PubMed  Google Scholar 

  45. Hall, A. R. & MacLean, R. C. Epistasis buffers the fitness effects of rifampicin-resistance mutations in Pseudomonas aeruginosa. Evolution 70, 1161–1161 (2016).

    Article  PubMed  Google Scholar 

  46. Rozen, D. E., McGee, L., Levin, B. R. & Klugman, K. P. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51, 412–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Vogwill, T., Kojadinovic, M. & MacLean, R. C. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proc. Biol. Sci. 283, 20160151 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Vogwill, T. & MacLean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol. Appl. 8, 284–295 (2015).

    Article  PubMed  Google Scholar 

  49. Johanson, U., Ævarsson, A., Liljas, A. & Hughes, D. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. J. Mol. Biol. 258, 420–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40, 433–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Salverda, M. L. M. et al. Initial mutations direct alternative pathways of protein evolution. PLoS Genet. 7, e1001321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Dahlberg, C. & Chao, L. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165, 1641–1649 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Loftie-Eaton, W. et al. Evolutionary paths that expand plasmid host-range: implications for spread of antibiotic resistance. Mol. Biol. Evol. 33, 885–897 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. San Millan, A., Heilbron, K. & MacLean, R. C. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME J. 8, 601–612 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. San Millan, A. et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat. Commun. 5, 5208–5211 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Silva, R. F. et al. Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations. PLoS Genet. 7, e1002181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Porse, A., Schønning, K., Munck, C. & Sommer, M. O. A. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol. Biol. Evol. 33, 2860–2873 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alekshun, M. N. & Levy, S. B. Molecular mechanisms of antibacterial multidrug resistance. Cell 128, 1037–1050 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Palmer, A. C. & Kishony, R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat. Rev. Genet. 14, 243–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Garcia, L. G. et al. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J. Antimicrob. Chemother. 68, 1455–1464 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Munck, C., Gumpert, H. K., Wallin, A. I. N., Wang, H. H. & Sommer, M. O. A. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl Med. 6, 262ra156 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl Med. 5, 204ra132 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lázár, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5, 4352 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Pena-Miller, R. et al. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile–frown transition. PLoS Biol. 11, e1001540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Périchon, B. & Courvalin, P. Synergism between β-lactams and glycopeptides against VanA-type methicillin-resistant Staphylococcus aureus and heterologous expression of the vanA operon. Antimicrob. Agents Chemother. 50, 3622–3630 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Brolund, A. & Sandegren, L. Characterization of ESBL disseminating plasmids. Infect. Dis. (Lond.) 48, 18–25 (2016).

    Article  CAS  Google Scholar 

  69. Mathers, A. J., Peirano, G. & Pitout, J. D. D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 28, 565–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Molton, J. S., Tambyah, P. A., Ang, B. S. P., Ling, M. L. & Fisher, D. A. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin. Infect. Dis. 56, 1310–1318 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Bean, D. C., Livermore, D. M., Papa, I. & Hall, L. M. C. Resistance among Escherichia coli to sulphonamides and other antimicrobials now little used in man. J. Antimicrob. Chemother. 56, 962–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Enne, V. I., Livermore, D. M., Stephens, P. & Hall, L. M. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357, 1325–1328 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Sundqvist, M. et al. Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J. Antimicrob. Chemother. 65, 350–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Locke, J. B., Hilgers, M. & Shaw, K. J. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob. Agents Chemother. 53, 5265–5274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gordon, D. M. & Riley, M. A. A theoretical and experimental analysis of bacterial growth in the bladder. Mol. Microbiol. 6, 555–562 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Sandegren, L., Lindqvist, A., Kahlmeter, G. & Andersson, D. I. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J. Antimicrob. Chemother. 62, 495–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Naseer, U. & Sundsfjord, A. The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb. Drug Resist. 17, 83–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 3, 243–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. D'Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Sommer, M. O. A., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Munck, C. et al. Limited dissemination of the wastewater treatment plant core resistome. Nat. Commun. 6, 8452 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kahlmeter, G. & Poulsen, H. O. Antimicrobial susceptibility of Escherichia coli from community-acquired urinary tract infections in Europe: the ECO·SENS study revisited. Int. J. Antimicrob. Agents 39, 45–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Huseby, D. L. et al. Mutation supply and relative fitness shape the genotypes of ciprofloxacin-resistant Escherichia coli. Mol. Biol. Evol. 34, 1029–1039 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Moore, A. M., Munck, C., Sommer, M. O. A. & Dantas, G. Functional metagenomic investigations of the human intestinal microbiota. Front. Microbiol. 2, 188 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dantas, G. & Sommer, M. O. Context matters — the complex interplay between resistome genotypes and resistance phenotypes. Curr. Opin. Microbiol. 15, 577–582 (2012).

    Article  PubMed  Google Scholar 

  88. Yoon, E.-J. et al. Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6′)-Ih. J. Antimicrob. Chemother. 71, 601–606 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Martínez, J. L., Coque, T. M. & Baquero, F. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat. Rev. Microbiol. 13, 396–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Jaffé, A., Chabbert, Y. A. & Derlot, E. Selection and characterization of β-lactam-resistant Escherichia coli K-12 mutants. Antimicrob. Agents Chemother. 23, 622–625 (1983).

    Article  PubMed  PubMed Central  Google Scholar 

  91. George, A. M. & Levy, S. B. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J. Bacteriol. 155, 531–540 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Heisig, P. & Tschorny, R. Characterization of fluoroquinolone-resistant mutants of escherichia coli selected in vitro. Antimicrob. Agents Chemother. 38, 1284–1291 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Buckel, P., Buchberger, A., Böck, A. & Wittmann, H. G. Alteration of ribosomal protein L6 in mutants of Escherichia coli resistant to gentamicin. Mol. Gen. Genet. 158, 47–54 (1977).

    Article  CAS  PubMed  Google Scholar 

  94. Adler, M., Anjum, M., Andersson, D. I. & Sandegren, L. Influence of acquired β-lactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli. J. Antimicrob. Chemother. 68, 51–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Oakberg, E. F. & Luria, S. W. Mutations to sulfonamide resistance in Staphylococcus aureus. Genetics 32, 249–261 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zurenko, G. E. et al. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother. 40, 839–845 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug. Discov. 12, 371–387 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories was supported by grants from the Swedish Research Council (to D.I.A.), and the Novo Nordisk Foundation, the Lundbeck Foundation and the Danish Free Research Council (to M.O.A.S. and C.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan I. Andersson.

Ethics declarations

Competing interests

The authors declare the following competing interests: M.O.A.S. and R.T.K. are shareholders in AntibioTx; C.M. declares no competing interests; D.I.A. is a consultant for Prebona and Bactiguard.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sommer, M., Munck, C., Toft-Kehler, R. et al. Prediction of antibiotic resistance: time for a new preclinical paradigm?. Nat Rev Microbiol 15, 689–696 (2017). https://doi.org/10.1038/nrmicro.2017.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.75

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology